Korean Journal of Materials Research, Vol.32, No.5, 243-248, May, 2022
Influence of Annealing Temperature on Crystal Orientation of Electrodeposited Sb2Se3 Thin-Film Photovoltaic Absorbers
E-mail:
This study demonstrates a different approach method to fabricate antimony selenide (Sb2Se3) thin-films for the solar cell applications. As-deposited Sb2Se3 thin-films are fabricated via electrodeposition route and, subsequently, annealed in the temperature range of 230 ~ 310℃. Cyclic voltammetry is performed to investigate the electrochemical behavior of the Sb and Se ions. The deposition potential of the Sb2Se3 thin films is determined to be -0.6 V vs. Ag/AgCl (in 1 M KCl), where the stoichiometric composition of Sb2Se3 appeared. It is found that the crystal orientations of Sb2Se3 thin-films are largely dependent on the annealing temperature. At an annealing temperature of 250℃, the Sb2Se3 thin-film grew most along the c-axis [(211) and/or (221)] direction, which resulted in the smooth movement of carriers, thereby increasing the carrier collection probability. Therefore, the solar cell using Sb2Se3 thin-film annealed at 250℃ exhibited significant enhancement in JSC of 10.03 mA/cm2 and a highest conversion efficiency of 0.821 % because of the preferred orientation of the Sb2Se3 thin film.
- Septina W, Ikeda S, Iga Y, Harada T, Matsumura M, Thin Solid Films, 550, 700 (2014)
- Li Z, Liang X, Li G, Liu H, Zhang H, Guo J, Chen J, Shen K, San X, Yu W, Schropp REI, Mai Y, Nat. Commun., 10, 125 (2019)
- Wang L, Li D, Li K, Chen C, Deng H, Gao L, Zhao Y, Jiang F, Li L, Huang F, He Y, Song H, Niu G, Tang J, Nat. Energy, 2, 17046 (2017)
- Maghraoui-Meherzi M, Nasr TB, Dachraoui M, Mater. Sci. Semicond. Process, 16, 179 (2013)
- Chen C, Li W, Zhou Y, Chen C, Luo M, Liu X, Zeng K, Yang B, Zhang C, Han J, Tang J, Appl. Phys. Lett., 107, 043905 (2015)
- Bhattacharya RN, Sol. Energy Mater. Sol. Cells, 113, 96 (2013)
- Scragg JJ, Berg DM, Dale PJ, J. Electroanal. Chem., 646, 52 (2010)
- Kwon Y, Kim Y, Jeong M, Do H, Cho H, Lee J, Sol. Energy Mater. Sol. Cells, 172, 11 (2017)
- Ngo TT, Chavhan S, Kosta I, Miguel O, Grande HJ, Tena-Zaera R, ACS Appl. Mater. Interfaces, 6, 2836 (2014)
- Hatsuta N, Takemori D, Takashiri M, J. Alloy. Compd., 685, 147 (2016)
- Lai Y, Han C, Lv X, Yang J, Liu F, Li J, Liu Y, J. Electroanal. Chem., 671, 73 (2012)
- Kemell M, Saloniemi H, Ritala M, Leskela M, Electrochim. Acta, 45, 3737 (2000)
- Lee H, Lee J, Hwang Y, Kim Y, Curr. Appl. Phys., 14, 18 (2014)
- Lai Y, Liu F, Li J, Zhang Z, Liu Y, J. Electroanal. Chem., 639, 187 (2010)
- Tang A, Long M, He Z, Electrochim. Acta, 146, 346 (2014)
- Shi X, Zhang X, Ma C, Wang C, J. Solid State Electrochem., 14, 93 (2009)
- Kowalik R, Zabinski P, Fitzner K, Electrochim. Acta, 53, 6184 (2008)
- Li J, Wang B, Liu F, Yang J, Li J, Liu J, Jia M, Lai Y, Liu Y, Electrochim. Acta, 56, 8597 (2011)
- Lai Y, Chen Z, Han C, Jiang L, Liu F, Li J, Liu Y, Appl. Surf. Sci., 261, 510 (2012)
- Liu X, Xiao X, Yang Y, Xue D, Li D, Chen C, Lu S, Gao L, He Y, Beard MC, Wang G, Chen S, Tang J, Prog. Photovoltaics, 25, 861 (2017)
- Zhou Y, Wang L, Chen S, Qin S, Liu X, Chen J, Xue D, Luo M, Cao Y, Cheng Y, Sargent EH, Tang J, Nat. Photonics, 9, 409 (2015)
- Tiwari KJ, Ren M, Vajandar SK, Osipowicz T, Subrahmanyam A, Malar P, Sol. Energy, 160, 56 (2018)
- Leng M, Luo M, Chen C, Qin S, Chen J, Zhong J, Tang J, Appl. phys., 105, 083905 (2014)