화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.32, No.5, 237-242, May, 2022
Rational Design of Binder-Free Fe-Doped CuCo(OH)2 Nanosheets for High-Performance Water Oxidation
E-mail:
Designing and producing a low-cost, high-current-density electrode with good electrocatalytic activity for the oxygen evolution reaction (OER) is still a major challenge for the industrial hydrogen energy economy. In this study, nanostructured Fe-doped CuCo(OH)2 was discovered to be a precedent electrocatalyst for OER with low overpotential, low Tafel slope, good durability, and high electrochemically active surface sites at reduced mass loadings. Fe-doped CuCo(OH)2 nanosheets are made using a hydrothermal synthesis process. These nanosheets are clumped together to form a highly open hierarchical structure. When used as an electrocatalyst, the Fe-doped CuCo(OH)2 nanosheets required an overpotential of 260 mV to reach a current density of 50 mA cm−2. Also, it showed a small Tafel slope of 72.9 mV dec−1, and superior stability while catalyzing the generation of O2 continuously for 20 hours. The Fe-doped CuCo(OH)2 was found to have a large number of active sites which provide hierarchical and stable transfer routes for both electrolyte ions and electrons, resulting in exceptional OER performance.
  1. Jamesh MI, J. Power Sources, 333, 213 (2016)
  2. Jamesh MI, Sun X, J. Power Sources, 400, 31 (2018)
  3. Patil K, Babar P, Lee DM, Karade V, Jo E, Korade S, Kim JH, Sustain. Energy Fuels, 4, 5254 (2020)
  4. Babar P, Patil K, Lee DM, Karade V, Gour K, Pawar S, Kim JH, J. Colloid Interface Sci., 584, 760 (2021)
  5. Patil K, Babar P, Bae H, Jo E, Jang JS, Bhoite P, Kolekar S, Kim JH, Sustain. Energy Fuels, 6, 474 (2022)
  6. Babar P, Patil K, Mahmood J, Kim SJ, Kim JH, Yavuz CT, Cell Rep. Phys. Sci., 3, 100762 (2022)
  7. Wang Q, Xu H, Qian X, Huang B, Wang K, Jin L, He G, Chen H, Inorg. Chem., 61, 3176 (2022)
  8. Li M, Ye KH, Qiu W, Wang Y, Ren H, J. Am. Chem. Soc., 144(12), 5247 (2022)
  9. Xu X, Tian X, Zhong Z, Kang L, Yao J, J. Power Sources, 424, 42 (2019)
  10. Patil K, Babar P, Kim JH, Korean J. Mater. Res., 30, 217 (2020)
  11. Zhuang M, Ou X, Dou Y, Zhang L, Zhang Q, Wu R, Ding Y, Shao M, Luo Z, Nano Lett., 16, 4691 (2016)
  12. Chauhan M, Reddy KP, Gopinath CS, Deka S, ACS Catal., 7, 5871 (2017)
  13. Salmanion M, Najafpour MM, Inorg. Chem., 60, 6073 (2021)
  14. Li J, Chu D, Baker DR, Leff A, Zheng P, Jiang R, ACS Appl. Energy Mater., 4, 9969 (2021)
  15. Zhang W, Chen G, Du Y, Zhu S, Zhang J, Liu G, Zhang F, Wang S, Wang X, ACS Appl. Energy Mater., 5, 3129 (2022)
  16. Li Z, Xin Y, Zhang Z, Wu H, Wang P, Sci. Rep., 5, 1 (2015)
  17. Pillai AS, Rajagopalan R, Amruthalakshmi A, Joseph J, Ajay A, Shakir I, Nair SV, Balakrishnan A, Colloids Surf. A: Physicochem. Eng. Asp., 470, 280 (2015)