화학공학소재연구정보센터
Macromolecular Research, Vol.30, No.5, 342-347, May, 2022
Near-Infrared Reflective Dark-Tone Bilayer System for LiDAR-Based Autonomous Vehicles
E-mail:
Light Detection and Ranging (LiDAR) is a representative sensor for autonomous v ehicles (AVs) b y r ecognizing surrounding obj ects through d etecting the reflected near-infrared (NIR) light. However, this sensor has a weakness in recognizing the conventional carbon black-based dark-tone cars due to their low NIR reflectance. This cognitive impairment is a potential factor in a car accident in the AV system. Therefore, it is necessary to develop a dark-tone paint that can be applied to LiDAR by reflecting NIR. In this work, we developed a NIR reflective dark-tone bilayer system. As the bottom layer (surfacer layer), we used a conventional NIR-reflective surfacer. For the dark-tone top layer (basecoat layer), organic pigment-based paints were prepared. Various combinations of organic pigments such as perylene, copper(II) phthalocyanine, perylene diimide derivatives were studied to give a dark tone. After optimization, the developed bilayers exhibited dark tone with low L* values (less than 25) and high reflectance in the NIR region, over 60%, especially at 905 nm. Therefore, we expect the developed bilayer system to be applied as a dark-tone paint detectable by LiDAR.
  1. Kocić J, Jovičić N, Drndarević V, “Sensors and Sensor Fusion in Autonomous Vehicles,” 2018 26th Telecommunications Forum (TELFOR), pp. 420-425, 2018.
  2. Sheeny M, Wallace A, Wang S, IET Radar Sonar & Navig., 14, 1483 (2020)
  3. Ilas C, “Electronic sensing technologies for autonomous ground vehicles: A review,” 2013 8th international Symposium on Advanced Topics in Electrical Engineering, pp. 1-6, 2013.
  4. Axalta Coating Systems Germany GmbH & Co. KG. Int. Surf. Technol. 14, 16 (2021).
  5. Khajeh Mehrizi M, Mortazavi SM, Mallakpour S, Bidoki SM, Vik M, Vikova M, Fibers Polym., 13, 501 (2012)
  6. Wu S, Reddy GK, Banerjee D, Adv. Intell. Syst., 3, 2100049 (2021)
  7. Liu L, Han A, Ye M, Feng W, Solar Energy, 113, 48 (2015)
  8. Sangwong N, Suwan M, Supothina S, Mater. Today: Proc., 17, 1595 (2019)
  9. Oka R, Iwasaki S, Masui T, RSC Adv., 9, 38822 (2019)
  10. Leyssens L, Vinck B, Van Der Straeten C, Wuyts F, Maes L, Toxicology, 387, 43 (2017)
  11. Crossgrove J, Zheng W, NMR Biomed., 17, 544 (2004)
  12. Chen W, Song Y, Zhang L, Liu M, Hu X, Zhang Q, Angew. Chem.-Int. Edit., 57, 6289 (2018)
  13. Minei P, Lessi M, Contiero L, Borsacchi S, Martini F, Ruggeri G, Geppi M, Bellina F, Pucci A, Solar Energy, 198, 689 (2020)
  14. Lin Y, Wang Y, Wang J, Hou J, Li Y, Zhu D, Zhan X, Adv. Mater., 26, 5137 (2014)
  15. Huang C, Barlow S, Marder SR, J. Org. Chem., 76, 2386 (2011)
  16. Li C, Wonneberger H, Adv. Mater., 24, 613 (2012)
  17. Wurthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D, Chem. Rev., 116, 962 (2016)
  18. Dubey RK, Inan D, Sengupta S, Sudhölter EJR, Grozema FC, Jager WF, Chem. Sci., 7, 3517 (2016)
  19. Zhan X, Facchetti A, Barlow S, Marks TJ, Ratner MA, Wasielewski MR, Marder SR, Adv. Mater., 23, 268 (2011)
  20. Raj MR, Margabandu R, Mangalaraja RV, Anandan S, Soft Matter., 13, 9179 (2017)
  21. J YM, Lim TH, Kim JG, Gong MS, Macromol. Res., 15, 473 (2007)
  22. Fang K, Huang Y, Chang G, Yang J, Shen Y, Ye X, Macromol. Res., 23, 656 (2015)
  23. Sudhakar P, Neena KK, Thilagar P, Dalton Trans., 48, 7218 (2019)
  24. Qin J, Qu J, Song J, Song Z, Zhang W, Shi Y, Zhang T, Xue X, Zhang R, Zhang H, Zhang Z, Wu X, J. Power Energy Eng., 2, 68 (2014)