화학공학소재연구정보센터
Macromolecular Research, Vol.30, No.5, 325-333, May, 2022
Effects of Bacterial Cellulose Whisker Melting Composite on Crystallization and Mechanical Properties of PHBV Composites
E-mail:,
Acetylation of bacterial cellulose whisker (BCW) with acetic anhydride can effectively improve the thermal stability of BCW and the dispersion of interface compatibility with PHBV. The influence of the modified cellulose whiskers on the crystallization and mechanical properties of the PHBV matrix was studied using differential scanning calorimetry (DSC), polarization optical microscopy (POM), and XRD. The results show that ABCW has heterogeneous nucleation and hindrance effect on the PHBV matrix simultaneously. With the increase of ABCW content, PHBV gradually decreases from large spherulite and then increases, and the crystallinity decreases. When the content of ABCs is 1.2%, ABCW has the best strengthening effect on PHBV, and the bending strength and bending modulus are 44.7% and 34.5% higher than PHBV.
  1. Rivera-Briso AL, Serrano-Aroca A, Polymer, 10, 732 (2018)
  2. Raza ZA, Abid S, Banat IM, Int. Biodeterior. Biodegrad., 126, 45 (2018)
  3. Wu J, Wu Z, Xue Z, Li H, Liu J, RSC Adv., 7, 22197 (2017)
  4. Rodriguez-Uribe A, Wang T, Pal AK, Wu F, Mohanty AK, Misra M, Compos. Part C, 6, 100201 (2021)
  5. Varghese SA, Pulikkalparambil H, Rangappa SM, Siengchin S, Parameswaranpillai J, Food Packaging Shelf Life, 25, 100538 (2020)
  6. Keskin G, Kızıl G, Bechelany M, Pochat-Bohatier C, Öner M, Pure Appl. Chem., 89 (2018)
  7. Chen J, Yang R, Ou J, Tang C, Tam KC, Carbohydr. Polym., 242, 116399 (2020)
  8. Yu HY, Qin ZY, Wang LF, Zhou Z, Carbohydr. Polym., 87, 2447 (2012)
  9. Ke Y, Wang YJ, Ren L, Zhao QC, Huang W, Acta Biomater., 6, 1329 (2010)
  10. Ke Y, Wang Y, Ren L, Wu G, Xue W, J. Appl. Polym. Sci., 118, 390 (2010)
  11. Jing LI, Polym. Bull., 31, 61 (2010)
  12. Xiang H, Chen Z, Zheng N, Zhang X, Zhu L, Zhou Z, Zhu M, Int. J. Biol. Macromol., 122, 1136 (2019)
  13. H. Z. A, H. Y. Y. A. B, C. W. A, J. Y. A, Carbohydr. Polym., 173, 7 (2017)
  14. Ramburrun P, Kumar P, Choonara YE, du Toit LC, Pillay V, Biomed. Mater., 14, 065015 (2019)
  15. Tyler S, Mohammed N, Carlos M, Gary E, Polymer, 10, 166 (2018)
  16. Kim HJ, Choi YH, Jeong JH, Kim H, Yang HS, Hwang SY, Koo JM, Eom Y, Macromol. Res., 29, 720 (2021)
  17. Chawalitsakunchai W, Dittanet P, Loykulnant S, Sae-oui P, Tanpichai S, Seubsai A, Prapainainar P, Mater. Today Commun., 28, 102594 (2021)
  18. Miao C, Hamad WY, Curr. Opin. Solid State Mater. Sci., 23, 100761 (2019)
  19. Kunaver M, Anlovar A, Agar E, Carbohydr. Polym., 148, 251 (2016)
  20. Costa LADS, Fonsêca AF, Pereira FV, Druzian JI, 2015.
  21. Ambrosio-Martin J, Jose Fabra M, Lopez-Rubio A, Gorrasi G, Sorrentino A, Lagaron JM, J. Polym. Environ., 24, 1 (2016)
  22. Ahmed J, Gultekinoglu M, Edirisinghe M, Biotechnol. Adv., 41, 107549 (2020)
  23. Yoon OJ, Macromol. Res., 24, 973 (2016)
  24. Ten E, Turtle J, Bahr D, Jiang L, Wolcott M, Polymer, 51, 2652 (2010)
  25. Yu HY, Qin ZY, Zhou Z, Prog. Nat. Sci. Mater. Int., 21, 478 (2011)
  26. Long J, Morelius E, Jinwen Z, Wolcott M, Holbery J, J. Compos. Mater., 42, 2629 (2008)
  27. Jun D, Guomin Z, Mingzhu P, Leilei Z, Dagang L, Rui Z, Carbohydr. Polym., 168, 255 (2017)
  28. Vlachopoulos J, Strutt D, Mater. Sci. Technol., 19, 1161 (2003)
  29. Roman M, Winter WT, Biomacromolecules, 5, 1671 (2004)
  30. Shan GF, Gong X, Chen WP, Chen L, Zhu MF, Colloid Polym. Sci., 289, 1005 (2011)
  31. Li Q, Renneckar S, Biomacromolecules, 12, 650 (2011)