화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.110, 576-586, June, 2022
Droplet microfluidics for double lipase immobilisation using TiO2 and alginate microbeads
E-mail:
A double immobilisation technique was developed for C. antarctica lipase (CALB) that improved its enzymatic activity and solved difficulties frequently observed in reactions catalysed by lipases. The first immobilisation consisted of CALB adsorption onto a TiO2 nanoparticle surface (CALB TiO2). The adsorption was carried out by an oriented monolayer formed by CALB’s hydrophilic amino acids and the TiO2 surface, leaving the CALB’s active site accessible for reaction. As a result, an increase in enzymatic activity was achieved. The Relative Enzymatic Activity ((REA) obtained was 289%. The second immobilisation consisted of CALBTiO2 entrapment into calcium alginate microbeads [(CALBTiO2)EDTA-Ca], obtained by an internal crosslinking ion-exchange mechanism and using microfluidic droplet technique. The microbiocatalyst obtained, (CALBTiO2)EDTA-Ca, retained a high enzymatic activity (REAt=0 = 232%) and stability (REAt=30days = 263%) at a size (diameter, Ø=8.9· 104 nm) that enabled easier recovery than CALBTiO2 (Ø = 2.3· 102 nm) or CALBFree (Ø=5.0 nm), and showed a favourable porosity for diffusion without releasing CALBTiO2. Although the microbeads showed CALBFree leaching, as demonstrated by the loss of REA after a mechanical resistant test, (CALBTiO2)EDTA-Ca maintained an almost constant REA.
  1. Macrae AR, Hammond RC, Biotechnol. Genet. Eng. Rev., 3(1), 193 (1985)
  2. Sipponen MH, Farooq M, Koivisto J, Pellis A, Seitsonen J, Österberg M, Nat. Commun., 9, 1 (2018)
  3. Joyce P, Kempson I, Prestidge CA, Colloids Surf. B: Biointerfaces, 142, 173 (2016)
  4. da S. Pereira A, Fraga JL, Diniz MM, Fontes-Sant’ana GC, Amaral PFF, Int. J. Mol. Sci., 19(11) (2018)
  5. Arana-Peña S, Rios NS, Carballares D, Gonçalves LRB, Fernandez-Lafuente R, Catal. Today, 362, 130 (2021)
  6. Uppenberg J, Hansen MT, Patkar S, Jones A, Structure, 2(4), 293 (1994)
  7. Zisis T, Freddolino PL, Turunen P, van Teeseling MCF, Rowan AE, Blank KG, Biochemistry, 54(38), 5969 (2015)
  8. van Santen RA, Acc. Chem. Res., 42(1), 57 (2009)
  9. Tan SX, Lim S, Ong HC, Pang YL, Fuel, 235, 886 (2019)
  10. Reis P, Holmberg K, Miller R, Leser ME, Raab T, Watzke HJ, C. R. Chim., 12(1-2), 163 (2009)
  11. Laszlo JA, Evans KO, J. Mol. Catal. B-Enzym., 48(3-4), 84 (2007)
  12. Laane C, Verhaert R, Isr. J. Chem., 28(1), 17 (1987)
  13. Zaks A, Klibanov AM, Proc. Natl. Acad. Sci., 82(10), 3192 (1985)
  14. Cejudo-Sanches J, Orrego AH, Jaime-Mendoza A, Ghobadi R, Moreno-Perez S, Fernandez-Lorente G, Rocha-Martin J, Guisan JM, Process Biochem., 92, 156 (2020)
  15. Badoei-dalfard A, Tahami A, Karami Z, Colloids Surf. B: Biointerfaces, 209, 112151 (2022)
  16. Mukhopadhyay A, Dasgupta AK, Chattopadhyay D, Chakrabarti K, Bioresour. Technol., 116, 348 (2012)
  17. Viñambres M, Filice M, Marciello M, Polymer, 8(6), 615 (2018)
  18. Foresti ML, Valle G, Bonetto R, Ferreira ML, Briand LE, Appl. Surf. Sci., 256(6), 1624 (2010)
  19. Hou C, Qi Z, Zhu H, Colloids Surf. B: Biointerfaces, 128, 544 (2015)
  20. An J, Li G, Zhang Y, Zhang T, Liu X, Gao F, Peng M, He Y, Fan H, Catalysts, 10(3), 338 (2020)
  21. Chronopoulou L, Kamel G, Sparago C, Bordi F, Lupi S, Diociaiuti M, Palocci C, Soft Matter, 7(6), 2653 (2011)
  22. Zhou W, Zhou X, Zhuang W, Lin R, Zhao Y, Ge L, Li M, Wu J, Yang P, Zhang H, Zhu C, Ying H, Process Biochem., 110, 118 (2021)
  23. Zhang B, Li P, Zhang H, Wang H, Li X, Tian L, Ali N, Ali Z, Zhang Q, Chem. Eng. J., 291, 287 (2016)
  24. Cui J, Zhao Y, Liu R, Zhong C, Jia S, Nat. Publishing Group, 27928 (2016)
  25. Shuai W, Das RK, Naghdi M, Brar SK, Verma M, Biotechnol. Appl. Biochem., 64(4), 496 (2017)
  26. Alnoch RC, dos Santos LA, de Almeida JM, Krieger N, Mateo C, Catalysts, 10(6), 1 (2020)
  27. Fundueanu G, Nastruzzi C, Carpov A, Desbrieres J, Rinaudo M, Biomaterials, 20(15), 1427 (1999)
  28. McHugh DJ, Production and utilisation of products from commercial seaweeds, Food Agric. Org. UN (1987).
  29. Håti AG, Bassett DC, Ribe JM, Sikorski P, Weitz DA, Stokke BT, Lab Chip, 16(19), 3718 (2016)
  30. de Carvalho BG, Taketa TB, Garcia BBM, Han SW, de la Torre LG, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 118, 111467 (2021)
  31. Oliveira AF, Bastos RG, de la Torre LG, Biochem. Eng. J., 143, 110 (2019)
  32. Terry SC, Jerman JH, Angell JB, IEEE Trans. Electron Devices, 26(12), 1880 (1979)
  33. Roberge DM, Ducry L, Bieler N, Cretton P, Zimmermann B, Chem. Eng. Technol., 28(3), 318 (2005)
  34. Mazutis L, Vasiliauskas R, Weitz DA, Macromol. Biosci., 15(12), 1641 (2015)
  35. Silva GS, Oliveira PC, Giordani DS, de Castro HF, J. Braz. Chem. Soc., 22(8), 1407 (2011)
  36. Deveci I, Dogaç YI, Teke M, Mercimek B, Appl. Biochem. Biotechnol., 175(2), 1052 (2015)
  37. Netto CGCM, Toma HE, Andrade LH, J. Mol. Catal. B-Enzym., 85-86, 71 (2013)
  38. Xie W, Zang X, Food Chem., 257, 15 (2018)
  39. Baharfar R, Mohajer S, Catal. Lett., 146(9), 1729 (2016)
  40. Singh N, Kumar R, Sachan PK, ISRN Chem. Eng., 2013, 1 (2013)
  41. Xie W, Wang J, Energy Fuels, 28(4), 2624 (2014)
  42. Wenlei X, Ning M, Energy Fuels, 23, 1347 (2009)
  43. Xie W, Zang X, Food Chem., 227, 397 (2017)
  44. Reetz MT, Zonta A, Vijayakrishnan V, Schimossek K, J. Mol. Catal. A-Chem., 134(1-3), 251 (1998)
  45. Zhang S, Shang W, Yang X, Zhang S, Zhang X, Chen J, Bull. Korean Chem. Soc., 34(9), 2741 (2013)
  46. Trodler P, Pleiss J, BMC Struct. Biol. (2008)
  47. McPherson JW, Kim J, Shanware A, Mogul H, Rodriguez J, IEEE Trans. Electron Devices, 50(8), 1771 (2003)
  48. Ganjalikhany MR, Ranjbar B, Taghavi AH, Moghadam TT, PLoS One (2012)
  49. Gruber CC, Pleiss J, J. Mol. Catal. B-Enzym., 84, 48 (2012)
  50. Stauch B, Fisher SJ, Ciani M, J. Lypid Res., 56(12), 2348 (2015)
  51. Kaneko D, Le NQT, Shimoda T, Kaneko T, Polym. J., 42(10), 829 (2010)
  52. Dharmsthiti S, Kuhasuntisuk B, J. Ind. Microbiol. Biotechnol., 75 (1998)
  53. Snellman EA, Sullivan ER, Colwell RR, Eur. J. Biochem., 269(23), 5771 (2002)
  54. Ghori MI, Iqbal MJ, Hameed A, Braz. J. Microbiol., 42, 22 (2011)
  55. Handelsman T, Shoham Y, J. Gen. Appl. Microbiol., 40(5), 435 (1994)
  56. Hosseini SM, Kim SM, Sayed M, Younesi H, Bahramifar N, Park JH, Pyo SH, Biochem. Eng. J., 143, 141 (2019)
  57. Peirce S, Tacias-Pascacio VG, Russo ME, Marzocchella A, Virgen-Ortíz JJ, Fernandez-Lafuente R, Molecules, 21, 6 (2016)
  58. Zdarta J, Klapiszewski L, Jedrzak A, Nowicki M, Moszynski D, Jesionowski T, Catalysts, 7, 1 (2017)
  59. de Barros HR, Santos MC, Barbosa LRS, Piovan L, Riegel-Vidotti IC, J. Braz. Chem. Soc., 30(10), 2231 (2019)
  60. Otero C, Ballesteros A, Guisán JM, Appl. Biochem. Biotechnol., 19(2), 163 (1988)
  61. Xie W, Hu L, Yang X, Ind. Eng. Chem. Res., 54(5), 1505 (2015)
  62. Lan Z, Zhao C, Guo W, Guan X, Zhang X, J. Microbiol. Biotechnol., 25(4), 253 (2015)
  63. Hou C, Wang Y, Zhu H, Wei H, Chem. Eng. J., 283, 397 (2016)