화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.110, 564-575, June, 2022
Effects of the resultant force due to two-phase density difference on droplet formation in a step-emulsification microfluidic device
E-mail:
This study focuses on the influence of the resultant force caused by the density difference of the two phases on the droplet generation process in a step-emulsification microfluidic device. Threedimensional visualization is used to observe the characteristics of droplet generation. According to the difference in droplet generation form, it can be divided into drip generation mode and suspended generation mode. In the suspended generation mode, the droplets are more inclined to the formation process of the expansion of the ellipsoid, whose size in the horizontal direction is larger than the vertical direction; while in the drip generation mode, the shape of the droplet is opposite. The control stage of the droplet generation under various operating conditions is determined. As the viscosity of the dispersed phase increases, the control stage of the suspended generation mode is the necking stage, and the control stage of the drip generation mode changes from the first stage of three-dimensional expansion to the necking stage. The model of the droplet generation is proposed by combining mechanical analysis and experimental testing data, and the droplet size prediction formula is thereby obtained.
  1. Anna SL, Annu. Rev. Fluid Mech., 48, 285 (2016)
  2. Foudeh AM, Didar TF, Veres T, Tabrizian M, Lab Chip, 12, 3249 (2012)
  3. Ofner A, Moore DG, Rühs PA, Schwendimann P, Eggersdorfer M, Amstad E, et al., Macromol. Chem. Phys., 218, 1600472 (2017)
  4. Hashimoto M, Garstecki P, Whitesides GM, Small, 3, 1792 (2007)
  5. Song Q, Sun X, Dai Z, Gao Y, Gong X, Zhou B, et al., Lab Chip, 21, 1634 (2021)
  6. Hachey SJ, Hughes CCW, Lab Chip, 18, 2893 (2018)
  7. Shen Q, Zhang C, Tahir MF, Jiang S, Zhu C, Ma Y, et al., Chem. Eng. Process., 132, 148 (2018)
  8. Hashimoto M, Shevkoplyas SS, Zasonska B, Szymborski T, Garstecki P, Whitesides GM, Small, 4, 1795 (2008)
  9. Ofner IMA, Hagander M, Dutto A, Seybold H, Rühs PA, Studart AR, Adv. Funct. Mater., 29, 1806821 (2018)
  10. Khalid N, Kobayashi I, Neves MA, Uemura K, Nakajima M, Crit. Rev. Food Sci. Nutr., 58, 2364 (2018)
  11. Kobayashi I, Wada Y, Uemura K, Nakajima M, Microfluid. Nanofluid., 8, 255 (2009)
  12. Eggersdorfer ML, Seybold H, Ofner A, Weitz DA, Studart AR, Proc. Natl. Acad. Sci. USA, 115, 9479 (2018)
  13. Zhang Z, Wang Z, Bao F, Fan M, Jiang S, Zhu C, et al., J. Ind. Eng. Chem., 94, 127 (2020)
  14. Gomba JM, Perazzo CA, Nonlinear Soft Matter Phys., 86, 056310 (2012)
  15. Shaw BD, Harrison MJ, Microgravity Sci. Technol., 13, 30 (2002)
  16. Antonnikova A, Arkhipov VA, Basalaev SA, Perfil0eva KG, Usanina AS, Shrager GR, J. Eng. Phys. Thermophys., 91, 1505 (2018)
  17. Suh Y, Lee C, J. Comput. Phys., 241, 35 (2013)
  18. Balabel A, Int. J. Comput. Fluid Dyn., 26, 1 (2012)
  19. Zhan W, Liu Z, Jiang S, Zhu C, Ma Y, Fu T, J. Ind. Eng. Chem., 106, 469 (2022)
  20. Perez M, Brechet Y, Salvo L, Papoular M, Suery M, Europhys. Lett., 47, 189 (1999)
  21. Ren H, Xu S, Wu ST, Opt. Commun., 283, 3255 (2010)
  22. Totani T, Itami M, Nagata H, Kudo I, Iwasaki A, Hosokawa S, Microgravity Sci. Technol., 13, 42 (2002)
  23. Clime L, Malic L, Daoud J, Lukic L, Geissler M, Veres T, Lab Chip, 20, 3091 (2020)
  24. Kobayashi I, Mukataka S, Nakajima M, J. Colloid Interface Sci., 279, 277 (2004)
  25. Kobayashi I, Nakajima M, Chun K, Kikuchi Y, Fujita H, AIChE J., 48, 1639 (2002)
  26. Tong J, Nakajima M, Nabetani H, Kikuchi Y, Maruta Y, J. Colloid Interface Sci., 237, 239 (2001)
  27. Li R, Kobayashi I, Zhang Y, Neves MA, Uemura K, Nakajima M, Part. Sci. Technol., 37, 68 (2018)
  28. Sugiura S, Nakajima M, Seki M, Langmuir, 18, 5708 (2002)
  29. Sugiura S, Nakajima M, Iwamoto S, Seki M, Langmuir, 17, 5562 (2001)
  30. van Dijke KC, Schroën KCPGH , Boom RM, Langmuir, 24, 10107 (2008)
  31. Vladisavljevic GT, Ekanem EE, Zhang Z, Khalid N, Kobayashi I, Nakajima M, Chem. Eng. J., 333, 380 (2018)
  32. Dutka F, Opalski AS, Garstecki P, Lab Chip, 16, 2044 (2016)
  33. Ha JW, Yoon Y, Leal LG, Phys. Fluids, 15, 849 (2003)
  34. Jong WR, Kuo TH, Ho SW, Chiu HH, Peng SH, Int. Commun. Heat Mass Transf., 34, 186 (2007)
  35. Klooster ST, Sahin S, Schroen K, Sci. Rep., 9, 7820 (2019)
  36. Dangla R, Kayi SC, Baroud CN, Proc. Natl. Acad. Sci. USA, 110, 853 (2013)
  37. Dangla R, Fradet E, Lopez Y, Baroud CN, J. Phys. D-Appl. Phys., 46 (2013)
  38. Ruzicka MC, Chem. Eng. Res. Des., 86, 835 (2008)
  39. Jena SK, Bahga SS, Kondaraju S, Phys. Fluids, 33 (2021)
  40. Gharedaghi H, Dousti A, Eshraghi J, Hanafizadeh P, Ashjaee M, Chem. Eng. Sci., 173, 37 (2017)
  41. Postek W, Kaminski TS, Garstecki P, Lab Chip, 17, 1323 (2017)