화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.110, 520-528, June, 2022
Bi-functional carbon doped and decorated ZnO nanorods for enhanced pH monitoring of dairy milk and adsorption of hazardous dyes
E-mail:
This study demonstrates a simple and low-cost process for the in-situ doping and decoration of ZnO nanorods with carbon (CC–ZnO). In CC–ZnO, C-doping decreased the charge density (1.75 × 1018 cm-3) at the non-active sites of ZnO and decreased the charge transfer resistance (101 Ω) at the Cdoped- ZnO/electrolyte interface by suppressing native defects and reducing the Schottky barrier height (–0.20 eV), respectively. Moreover, C-decoration enhanced the amphoteric performances of ZnO to react efficiently with H+ and OH- ions in an aqueous electrolyte, demonstrating a high pH sensitivity (48 mV/ pH) and fast response time (7 s). Moreover, C-decoration enhanced the dispersion stability (92 h for 7.5 mg/mL concentration) and surface area (43.08 m2·g-1) of CC–ZnO in liquid phase, improving the monolayer adsorption capacity (119.40 mg/g) for the removal of rhodamine B (RhB) from aqueous solution. The optimum concentration and pH value of CC–ZnO and aqueous solution were determined to be 25 mg and 6.5, respectively, for maximum (84 %) removal of RhB in the initial five hours of reaction. Adsorption rate analysis revealed that CC–ZnO removed RhB through pseudo-second-order kinetics.
  1. Li J, Wu N, Catal. Sci. Technol., 5(3), 1360 (2015)
  2. Moussa H, Chouchene B, Gries T, Balan L, Mozet K, Medjahdi G, Schneider R, ChemCatChem, 10(21), 4973 (2018)
  3. Tsai YT, Chang SJ, Ji LW, Hsiao YJ, Tang IT, ACS Omega, 4(22), 19847 (2019)
  4. Cui W, Kang X, Zhang X, Cui X, J. Phys. Chem. Solids, 134, 165 (2019)
  5. Mani GK, Morohoshi M, Yasoda Y, Yokoyama S, Kimura H, Tsuchiya K, ACS Appl. Mater. Interfaces, 9(6), 5193 (2017)
  6. Yu J, Lee TI, Misra M, J. Ind. Eng. Chem., 66, 468 (2018)
  7. Tripathy N, Kim DH, Nano Convergence, 5(1), 1 (2018)
  8. Pirhashemi M, Habibi-Yangjeh A, Pouran SR, J. Ind. Eng. Chem., 62, 1 (2018)
  9. Wojnarowicz J, Chudoba T, Lojkowski W, Nanomaterials, 10(6), 1086 (2020)
  10. Javid N, Nasiri A, Malakootian M, Desalin. Water Treat., 141, 140 (2019)
  11. Sheteiwy MS, Shaghaleh H, Hamoud YA, Holford P, Shao H, Qi W, Hashmi MZ, Wu T, Environ. Sci. Pollut. Res., 28(28), 36942 (2021)
  12. Shrestha K, Kim Y, Jung Y, Kim S, Truong H, Cho G, Flexible Printed Electron., 6(4), 044001 (2021)
  13. Basnet P, Chatterjee S, Nano-Struct. Nano-Obj., 22, 100426 (2020)
  14. Hossain MM, Islam MA, Shima H, Hasan M, Hilal M, Lee M, RSC Adv., 8(30), 16927 (2018)
  15. Adil M, Zaid HM, Chuan LK, Latiff NRA, Energy Fuels, 30(7), 6169 (2016)
  16. Saliba S, Valverde Serrano C, Keilitz J, Kahn ML, Mingotaud C, Haag R, Marty JD, Chem. Mater., 22(23), 6301 (2010)
  17. Lv J, Zhang S, Luo L, Han W, Zhang J, Yang KE, Christie P, Environ. Sci. Technol., 46(13), 7215 (2012)
  18. Jiang C, Aiken, Hsu-Kim H, Environ. Sci. Technol., 49(19), 11476 (2015)
  19. Fu YS, Du XW, Kulinich SA, Qiu JS, Qin WJ, Li R, Sun J, Liu J, J. Am. Chem. Soc., 129(51), 16029 (2007)
  20. Chung SJ, Leonard JP, Nettleship I, Lee JK, Soong Y, Martello DV, Chyu MK, Powder Technol., 194(1-2), 75 (2009)
  21. Peng YH, Tsai YC, Hsiung CE, Lin YH, Shih YH, J. Hazard. Mater., 322, 348 (2017)
  22. Sun D, Sue HJ, Miyatake N, J. Phys. Chem. C, 112(41), 16002 (2008)
  23. David CA, Galceran J, Rey-Castro C, Puy J, Companys E, Salvador J, Monné J, Wallace R, Vakourov A, J. Phys. Chem. C, 116(21), 11758 (2012)
  24. Zhang Y, Chen Y, Westerhoff P, Crittenden J, Water Res., 43(17), 4249 (2009)
  25. Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z, Environ. Sci. Technol., 44(6), 1962 (2010)
  26. Xiong HM, Xu Y, Ren QG, Xia YY, J. Am. Chem. Soc., 130(24), 7522 (2008)
  27. Xie S, Lu X, Zhai T, Li W, Yu M, Liang C, Tong Y, J. Mater. Chem., 22(28), 14272 (2012)
  28. Tu N, Nguyen KT, Trung DQ, Tuan NT, Do VN, Huy PT, J. Lumines., 174, 6 (2016)
  29. Feng X et al., Appl. Surf. Sci., 562, 150106 (2021)
  30. Zhang X, Qin J, Hao R, Wang L, Shen XI, Yu R, Limpanart S, Ma M, Liu R, J. Phys. Chem. C, 119(35), 20544 (2015)
  31. He W, Van Ngoc H, Kang DJ, J. Photochem. Photobiol. A-Chem., 356, 212 (2018)
  32. Bai S, Jiang J, Zhang Q, Xiong Y, Chem. Soc. Rev., 44(10), 2893 (2015)
  33. Das D, Nandi P, Sol. Energy Mater. Sol. Cells, 217, 110674 (2020)
  34. Meng S et al., J. Phys. Chem. C, 122(46), 26326 (2018)
  35. Schmidt-Mende L, MacManus-Driscoll JL, Mater. Today, 10(5), 40 (2007)
  36. Al-Khalqi EM, Abdul Hamid MA, Al-Hardan NH, Keng LK, Sensors, 21(6), 2110 (2021)
  37. Glaspell G, Dutta P, Manivannan A, J. Cluster Sci., 16(4), 523 (2005)
  38. Lin CF et al., Results Phys., 16, 102976 (2020)
  39. Hanna B, Pillai LR, Rajeev K, Surendran KP, Unni KNN, Sens. Actuators A-Phys., 338, 113495 (2022)
  40. Luo Y, Yang Y, Wang L, Wang LI, Chen S, J. Alloy. Compd., 906, 164369 (2022)
  41. Sreejesh M, Dhanush S, Rossignol F, Nagaraja HS, Ceram. Int., 43(6), 4895 (2017)
  42. Le S, Jiang T, Li Y, Zhao Q, Li Y, Fang W, Gong M, Appl. Catal. B: Environ., 200, 601 (2017)
  43. Tan X et al., Opt. Mater., 96, 109266 (2019)
  44. Panneri S, Ganguly P, Nair BN, Mohamed AAP, Warrier KG, Hareesh UNS, Eur. J. Inorg. Chem., 2016(31), 5068 (2016)
  45. Akbari A et al., Inorg. Chem. Commun., 115, 107867 (2020)
  46. Shafi A, Ahmad N, Sultana S, Sabir S, Khan MZ, ACS Omega, 4(7), 12905 (2019)
  47. Tseng LT, Yi JB, Zhang XY, Xing GZ, Fan HM, Herng TS, Luo X, Ionescu M, Ding J, Li S, AIP Adv., 4(6), 067117 (2014)
  48. Hossain MM, Park OK, Hahn JR, Ku BC, Mater. Lett., 123, 90 (2014)
  49. Bechambi O, Sayadi S, Najjar W, J. Ind. Eng. Chem., 32, 201 (2015)
  50. Song Y, Zhang S, Zhang C, Yang Y, Lv K, Crystals, 9(8), 395 (2019)
  51. Hossain MM, Shima H, Islam MA, Hasan M, Lee M, J. Phys. Chem. C, 120(31), 17670 (2016)
  52. Hilal M, Han JI, Synth. Met., 245, 276 (2018)
  53. Hilal M, Han JI, Sol. Energy, 174, 743 (2018)
  54. Fukushima H et al., Evaluation of oxygen vacancy in ZnO using Raman spectroscopy, IEEE, 2015.
  55. Kennedy OW, White ER, Howkins A, Williams CK, Boyd IW, Warburton PA, Shaffer MSP, J. Phys. Chem. Lett., 10(3), 386 (2019)
  56. Xu T, Zhang L, Cheng H, Zhu Y, Appl. Catal. B: Environ., 101(3-4), 382 (2011)
  57. Abdullayeva N, Altaf CT, Mintas M, Ozer A, Sankir M, Kurt H, Sankir ND, Sci. Rep., 9(1) (2019)
  58. Swain G, Sultana S, Moma J, Parida K, Inorg. Chem., 57(16), 10059 (2018)
  59. Rasaie A et al., Mater. Chem. Phys., 262, 124296 (2021)
  60. Dehgani Z, Sedghiasl M, Ghaedi M, Sabzehmeidani MM, Adhami E, New J. Chem., 44(31), 13368 (2020)
  61. Hasan M et al., Polym. Test, 77, 105909 (2019)
  62. Dutta S, Gupta B, Srivastava SK, Gupta AK, Mater. Adv., 2(14), 4497 (2021)
  63. Singh M, Patkar RS, Vinchurkar M, Baghini MS, IEEE Sens. J., 20(1), 47 (2020)
  64. Hu J, Stein A, Bühlmann P, Trends Anal. Chem., 76, 102 (2016)
  65. Xiao-wei H, Xiao-bo Z, Ji-yong S, Zhi-hua LI, Jie-wen Z, Trends Food Sci. Technol.q, 81, 90 (2018)
  66. Yang CM et al., Sens. Actuators B-Chem., 329, 128953 (2021)