Journal of Industrial and Engineering Chemistry, Vol.110, 479-490, June, 2022
Rate-based model for predicting and evaluating H2S absorption in the haloalkaliphilic biological desulfurization process
E-mail:,
The highly efficient performance of H2S absorption is the crucial indicator for haloalkaliphilic biological desulfurization (HBDS) because it immediately concerns the H2S removal efficiency and pH change of alkaline solutions. Therefore, we investigated the effect of operating parameters on the H2S absorption’s performance under haloalkaline conditions. The gas–liquid ratio and packing height significantly improve H2S removal efficiency, from 80% to 90% and 66% to 99%, respectively. The absorption temperature had a trivial impact on the H2S removal efficiency, and the maximum value appeared at 45℃. Additionally, all operating parameters caused pH changes that varied in the acceptable range (0.1 to 0.5) during the absorption process. A rate-based model was successfully developed to predict the haloalkaliphilic H2S absorption process accurately. Moreover, this model could be implemented to effectively evaluate the HBDS system’s stability and provide reliable theoretical guidance for the industrial HBDS process to ensure good process stability.
Keywords:Haloalkaliphilic biological desulfurization;H2S absorption;Process stability;Rate-based model;Simulation;Optimization
- de Rink R, Klok JBM, van Heeringen GJ, Keesman KJ, Janssen AJH, ter Heijne A, Buisman CJN, J. Hazard. Mater., 383, 121104 (2020)
- Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P, Bioresour. Technol., 100(22), 5478 (2009)
- Weiland P, Appl. Microbiol. Biotechnol., 85(4), 849 (2010)
- Gutiérrez Ortiz FJ, Aguilera PG, Ollero P, Sep. Purif. Technol., 123, 200 (2014)
- Meng X, de Jong W, Pal R, Verkooijen AHM, Fuel Process. Technol., 91(8), 964 (2010)
- Feng Y, Wen J, Hu Y, Wu B, Wu M, Mi J, Chem. Eng. J., 326, 1255 (2017)
- Samak NA, Selim MS, Hao Z, Xing J, Talanta, 211, 120655 (2020)
- Roman P, Biotechnological Removal of H2S and Thiols From Sour Gas Streams Under Haloalkaline Conditions, Wageningen University, Wageningen, 2016.
- Aguilera PG, Gutiérrez Ortiz FJ, Fuel Process. Technol., 145, 148 (2016)
- Li J, Wang R, Dou S, Chem. Eng. J., 404, 127090 (2021)
- Maroño M, Ortiz I, Sánchez JM, Alcaraz L, Alguacil FJ, López FA, Chem. Eng. J., 419, 129669 (2021)
- Ren B, Lyczko N, Zhao Y, Nzihou A, Chem. Eng. J., 419, 129558 (2021)
- Raabe T, Mehne M, Rasser H, Krause H, Kureti S, Chem. Eng. J., 371, 738 (2019)
- Verbeeck K, De Vrieze J, Biesemans M, Rabaey K, Chem. Eng. J., 361, 1479 (2019)
- Yi K, Liu H, Wang J, Lu G, Jin M, Hu H, Yao H, Chem. Eng. J., 360, 1498 (2019)
- Hervy M, Pham Minh D, Gérente C, Weiss-Hortala E, Nzihou A, Villot A, Le Coq L, Chem. Eng. J., 334, 2179 (2018)
- Gary JH, Handwerk JH, Kaiser MJ, Geddes D, Petroleum Refining: Technology And Economics, CRC Press, 2007.
- Liu W, Chu GW, Luo Y, Zhan YY, Zhang LL, Chen JF, Ind. Eng. Chem. Res., 58(24), 10629 (2019)
- de Rink R, Klok JBM, van Heeringen GJ, Sorokin DY, ter Heijne A, Zeijimaker R, Mos YM, de wilde V, Keesman KJ, Buisman CJN, Environ. Sci. Technol., 53(8), 4519 (2019)
- Janssen AJH, Lens PNL, Stams AJM, Plugge CM, Sorokin DY, Muyzer G, Dijkman H, Van Zessen E, Luimes P, Buisman CJN, Sci. Total Environ., 407(4), 1333 (2009)
- Klok JB, van den Bosch PL, Buisman CJ, Stams AJ, Keesman KJ, Janssen AJ, Environ. Sci. Technol., 46(14), 7581 (2012)
- Kleinjan WE, de Keizer A, Janssen AJH, in: Elemental Sulfur and Sulfur-Rich Compounds I, Springer, Berlin, Heidelberg, pp. 167–188, 2003.
- Chen Z, Yang G, Hao X, Samak NA, Jia Y, Peh S, Mu T, Yang M, Xing J, Eng. Life Sci., 1 (2021)
- Sorokin DY, Kuenen JG, Microbiol. Rev., 29(4), 685 (2005)
- Hao XM, Mu TZ, Sharshar MM, Yang MH, Zhong W, Jia YP, Chen Z, Yang GM, Xing JM, Bioresour. Technol., 337, 125367 (2021)
- Mu T, Yang M, Xing J, Biochem. Eng. J., 165, 107812 (2021)
- Sharshar MM, Samak NA, Ambreen S, Hao X, Mu T, Maarouf M, Zheng C, Gao Y, Liu Z, Jia Y, Li X, Zhong W, Peh S, Yang M, Xing J, Bioresour. Technol., 317, 124018 (2020)
- Sharshar MM, Samak NA, Hao X, Mu T, Zhong W, Yang M, Peh S, Ambreen S, Xing J, Bioresour. Technol., 288, 121486 (2019)
- Zhou JM, Song ZY, Yan DJ, Liu YL, Yang MH, Bin Cao H, Xing JM, J. Hazard. Mater., 274, 53 (2014)
- Zhou JM, Song ZY, Yan DJ, Liu YL, Yang MH, Bin Cao H, Xing JM, Bioresour. Technol., 153, 216 (2014)
- Sorokin DY, Kuenen JG, Muyzer G, Front. Microbiol., 2, 44 (2011)
- Hajdu-Rahkama R, Özkaya B, Lakaniemi AM, Puhakka JA, Chem. Eng. J., 401, 126047 (2020)
- Ebrahimi S, Picioreanu C, Kleerebezem R, Heijnen JJ, van Loosdrecht MCM, Chem. Eng. Sci., 58(16), 3589 (2003)
- Valenz L, Haidl J, Linek V, Ind. Eng. Chem. Res., 52(17), 5967 (2013)
- de Rink R, Gupta S, de Carolis FP, Liu D, ter Heijne A, Klok JBM, Buisman CJN, J. Environ. Chem. Eng., 9(6), 106450 (2021)
- Gupta S, Plugge CM, Klok JBM, Muyzer G, Appl. Microbiol. Biotechnol., 106, 1759 (2022)
- Sousa JA, Bijmans MF, Stams AJ, Plugge CM, Environ. Sci. Technol., 51(2), 914 (2017)
- Sousa JAB, Bolgár A, Christel S, Dopson M, Bijmans MFM, Stams AJM, Plugge CM, Sci. Total Environ., 745, 141017 (2020)
- Bolhàr-Nordenkampf M, Friedl A, Koss U, Tork T, Chem. Eng. Process., 43(6), 701 (2004)
- Borhani TNG, Akbari V, Hamid MKA, Manan ZA, J. Ind. Eng. Chem., 22, 306 (2015)
- Onda K, Takeuchi H, Okumoto Y, J. Chem. Eng. Jpn., 1(1), 56 (1968)
- Niu Z, Guo Y, Zeng Q, Lin W, Ind. Eng. Chem. Res., 51(14), 5309 (2012)
- Zhang Y, Chen H, Chen CC, Plaza JM, Dugas R, Rochelle GT, Ind. Eng. Chem. Res., 48(20), 9233 (2009)
- Edwards TJ, Maurer G, Newman J, Prausnitz JM, AIChE J., 24(6), 966 (1978)
- Pohorecki R, Moniuk W, Chem. Eng. Sci., 43(7), 1677 (1988)
- Chilton TH, Colburn AP, Ind. Eng. Chem. Res., 26(11), 1183 (2002)
- Stichlmair J, Bravo JL, Fair JR, Sep. Purif. Technol., 3(1), 19 (1989)
- Yu J, Wang S, Yu H, Int. J. Greenh. Gas Control, 50, 135 (2016)
- Reid RC, Prausnitz JM, Poling BE, The Properties Of Gases And Liquids, McGraw Hill Book Co., New York, 1987.
- Eslamimanesh A, Mohammadi AH, Richon D, J. Chem. Eng. Data, 56(4), 1573 (2011)
- Carroll JJ, Slupsky JD, Mather AE, J. Phys. Chem. Ref Data, 20(6), 1201 (1991)
- Chapoy A, Mohammadi AH, Tohidi B, Valtz A, Richon D, Ind. Eng. Chem. Res., 44(19), 7567 (2005)
- Yang G, Chen Z, Peh S, Hao X, Jia Y, Mu T, Yang M, Xing J, Ind. Eng. Chem. Res., 60(25), 9304 (2021)
- Huang SSS, Leu AD, Ng HJ, Robinson DB, Fluid Phase Equilib., 19(1), 21 (1985)
- Stoessell RK, Byrne PA, Geochim. Cosmochim. Acta, 46(8), 1327 (1982)
- Knuutila H, Hessen ET, Kim I, Haug-Warberg T, Svendsen HF, Chem. Eng. Sci., 65(6), 2218 (2010)
- Fogg PGT, IUPAC Solubility Data Series, Pergamon, Amsterdam, pp. 1– 165, 1988.
- Gavrilescu M, Cozma P, Wukovits W, Nmlih I, Friedl A, Environ. Eng. Manag. J., 12, 147 (2013)
- Liu J, Wang S, Zhao B, Qi G, Chen C, Chem. Eng. Sci., 75, 298 (2012)
- Zhuo Y, Han Y, Qu Q, Li J, Zhong C, Peng D, Bioresour. Technol., 280, 143 (2019)
- Klok JBM, de Graaff M, van den Bosch PLF, Boelee NC, Keesman KJ, Janssen AJH, Water Res., 47(2), 183 (2013)