화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.39, No.7, 1936-1945, July, 2022
Deep dechlorination of hydrocarbon oil by reactive adsorption on TiO2-based metal oxides
E-mail:,
This study reports reactive adsorptive dechlorination of hydrocarbon oil over TiO2-based metal oxides at the temperatures of 20-150 ℃. TiO2 and a series of TiO2-CeO2 were prepared by precipitation method and characterized by N2 adsorption, XRD, FT-IR, pyridine-IR, NH3-TPD and CO2-TPD. The characterization results showed that both the acidity and basicity of the adsorbent had a significant impact on its dechlorination capacity. TiO2-U precipitated by urea exhibited higher dechlorination capacity than TiO2-A precipitated by ammonia due to the higher surface area, more acid and base amounts of the former. Among various Ti(1-x)CexO2 (x=0.1, 0.3, 0.5, 0.7, 0.9, 1) oxides, Ti0.7Ce0.3O2 and Ti0.3Ce0.7O2 bimetallic oxides showed higher dechlorination capacity than TiO2-U, and the chlorine removal over Ti0.7Ce0.3O2 reached 82.8% after adsorption at 150 oC for 3 h. Mixing 5 wt% of alkali earth metal oxide into Ti0.7Ce0.3O2 mechanically enhanced its dechlorination capacity, and the chlorine removal over Ti0.7Ce0.3O2-BaO reached as high as 92.1%. The chlorine removal increased with increasing the adsorption temperature. Ion chromatography and GC-MS analysis revealed that organochlorine compound was converted into Cl and its corresponding alcohol over the adsorbent at 150 ℃. Finally, the mechanism of reactive adsorption dechlorination was proposed.
  1. Niu H, Zhao D, Xie G, Yuan Y, Zhang W, Zhang C, Li C, Cui L, Fuel, 304, 121410 (2021)
  2. Ge XL, Shi L, Wang X, Ind. Eng. Chem. Res., 53, 6351 (2014)
  3. Jiang GZ, Monsalve DAS, Clough P, Jiang Y, Leeke GA, Acs Sustain. Chem. Eng., 9, 1576 (2021)
  4. Wu B, Li Y, Li X, Zhu J, Energy Fuels, 29, 1391 (2015)
  5. Xu L, Stangland EE, Dumesic JA, Mavrikakis M, Acs Catal., 11, 7890 (2021)
  6. Zhao P, Huang N, Li J, Cui X, Fuel Process. Technol., 199, 106277 (2020)
  7. Soni VK, Singh G, Vijayan BK, Chopra A, Kapur GS, Ramakumar SSV, Energy Fuels, 35, 12763 (2021)
  8. Palos R, Gutiérrez A, Vela FJ, Olazar M, Arandes JM, Bilbao J, Energy Fuels, 35, 3529 (2021)
  9. Ball MR, Rivera-Dones KR, Stangland E, Mavrikakis M, Dumesic JA, J. Catal., 370, 241 (2019)
  10. Sun J, Han Y, Fu H, Wan H, Xu Z, Zheng S, Appl. Surf. Sci., 428, 703 (2018)
  11. Khaleel A, Microporous Mesoporous Mater., 91, 53 (2006)
  12. Lingaiah N, Uddin MA, Muto A, Sakata Y, Murata K, Appl. Catal. A: Gen., 207, 79 (2001)
  13. Zhang N, Li R, Zhang G, Dong L, Li TJAO, Acs Omega, 5, 11987 (2020)
  14. Chen J, Zhao X, Ying Z, China Pet. Process Pe., 19, 23 (2017)
  15. Mu Y, Zhan G, Huang C, Wang X, Ai Z, Zou J, Luo S, Zhang L, Environ. Sci. Technol., 53, 3208 (2019)
  16. Najafi V, Ahmadi E, Ziaee F, Iran. Polym. J., 27, 841 (2018)
  17. Lee SR, Cho JM, Son M, Park MJ, Kim WY, Kim SY, Bae JW, Chem. Eng. J., 331, 56 (2018)
  18. Ge X, Shi L, Wang X, Ind. Eng. Chem. Res., 53, 6351 (2014)
  19. Uddin M, Muto A, Imai T, Sakata Y, Fuel, 80, 1901 (2001)
  20. Jiang G, Monsalve D, Clough P, Jiang Y, Leeke GA, ACS Sustain. Chem. Eng., 9, 1576 (2021)
  21. Lopez-Urionabarrenechea A, de Marco I, Caballero BM, Laresgoiti MF, Adrados A, Fuel Process. Technol., 137, 229 (2015)
  22. Zhu W, Xu Y, Li H, Dai B, Xu H, Wang C, Chao Y, Liu H, Korean J. Chem. Eng., 31, 211 (2014)
  23. Chen SS, Hsi HC, Nian SH, Chiu CH, Appl. Catal. B: Environ., 160, 558 (2014)
  24. Guo J, Watanabe S, Janik MJ, Ma X, Song C, Catal. Today, 149, 218 (2010)
  25. Zhang W, Li X, Wang H, Song Y, Zhang S, Li C, Korean J. Chem. Eng., 34, 3132 (2017)
  26. Xiao J, Sitamraju S, Chen Y, Watanabe S, Fujii M, Janik M, Song C, AIChE J., 61, 631 (2015)
  27. Xiao XC, Peng BG, Cai LF, Zhang XM, Liu SR, Wang YD, Sci. Rep., 8, 7571 (2018)
  28. Wang YJ, Ma JM, Luo MF, Fang P, He M, J. Rare Earth, 25, 58 (2007)
  29. Zhang W, Li X, Wang H, Song YJ, Zhang SH, Li CQ, Korean J. Chem. Eng., 34, 3132 (2017)
  30. Wang X, Chen C, Chang Y, Liu H, J. Hazard. Mater., 161, 815 (2009)
  31. Zhen H, Qian X, Hu Y, Cheng J, Chem. Eng. J., 209, 547 (2012)
  32. Watanabe S, J. Phy. Chem. C, 113, 14249 (2009)
  33. Dahl M, Liu Y, Yin Y, Chem. Rev., 114, 9853 (2014)
  34. Adamczyk A, Długon E, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 89, 11 (2012)
  35. Hernández-Alonso MD, Tejedor-Tejedor I, Coronado JM, Anderson MA, Soria J, Catal. Today, 143, 364 (2009)
  36. Xie M, Jing L, Jia Z, Lin J, Fu H, J. Hazard. Mater., 176, 139 (2010)
  37. Parthasarathy P, Vivekanandan S, Ain Shams Eng. J., 11, 777 (2020)
  38. Sun Z, Takahashi F, Yu O, Fukushi K, Oshima Y, Yamamoto K, Chemosphere, 66, 151 (2007)
  39. Lu J, Ma S, Gao J, Freitas J, Bonagamba TJ, J. Appl. Polym. Sci., 90, 3252 (2010)
  40. Lu J, Ma S, Gao J, Energy Fuels, 16, 1251 (2002)
  41. Song H, Gao H, Song H, Yang G, Li X, Ind. Eng. Chem. Res., 55, 3813 (2016)
  42. Lee C, Jin Y, Kim J, Park SH, Chun BH, Kim SH, J. Ind. Eng. Chem., 19, 1443 (2013)
  43. Zhou Y, Li XY, Hou SL, Xu JX, J. Mol. Catal. A-Chem., 365, 203 (2012)
  44. Li S, Liu G, Zhang S, An K, Ma Z, J. Energy Chem., 43, 167 (2020)
  45. Lingaiah N, Uddin MA, Morikawa K, Muto A, Sakata Y, Murata K, Green Chem., 3, 74 (2001)