화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.60, No.2, 208-216, May, 2022
우리나라 전통 숯가마로부터 생산된 숯의 특성분석
Characterization of Charcoals prepared by Korean Traditional Kiln
E-mail:
초록
우리나라 전통 숯가마로부터 제조된 검탄 및 백탄의 표면형상과 흡착특성을 정량적으로 분석한 결과, 모든 시료의 열분석과 원소분석 등 물성은 제조회사마다 차이가 났고 백탄은 검탄에 비하여 확실히 열분해온도와 탄소함유량이 높 았다. 숯의 표면형상으로부터 활성화는 목재의 축방향을 따라 발생하고 활성화정도가 증가함에 따라 대기공의 벽면에 반경방향으로 새로운 기공이 발달하여 기공들이 서로 관통됨을 알 수 있었다. BET 등온흡.탈착곡선은 대부분 낮은 상 대압력에서 탈착이 안되는 이력현상을 보이므로서 미세공이 많이 발달된 Type I으로 분류되기 보다는 Type IV의 이 력현상 경로와 겹쳐지는 숯 만의 독특한 탈착곡선을 보이고 있다. 낮은 압력 이력(low-pressure hysteresis)현상은 흡착 질이 숯의 미세공 입구를 팽창시켜 끼이고는 탈착시에 빠져나오지 않기 때문이다. 따라서 분석된 비표면적값과 세공 크기분포도 등 숯의 흡착특성은 정확한 값을 나타내지 않는다. 이러한 특성값은 제조회사에 따라 다를 뿐만아니라 한 조각의 숯이라도 채취한 부위에 따라 크게 달랐다. 따라서, 우리나라 전통숯의 정량적 특성값을 제시하는 일은 쉽지 않 고 흡착제나 특수한 용도로 응용하기 위하여는 각각의 목적에 맞는 일정 수준의 성능을 갖도록 품질기준을 제시할 필 요가 있다.
Surface morphology and adsorption characteristics of black and white charcoals prepared from Korean traditional kiln were quantitatively analyzed. TGA and elemental analysis of charcoals were different from produced kiln, and thermal degradation temperature and carbon content of white charcoals were apparently higher than those of black charcoals. Surface morphology shows the activation progressed through the longitudinal direction of woods and new micropores were developed to radial direction on the surface of macropores as the furthermore activation resulting in the pore connection. BET adsorption isotherms show that there are low-pressure hysteresis due to the no desorption of adsorbates, which resulted in unique Type of charcoals overlapping Type I and Type IV. Such a low-pressure hysteresis is occurred from expansion of adsorbates, which were embedded in the micropore entrances and did not get out during the desorption run. The characteristics of charcoals such as specific surface area and pore size distribution did not show correct values depending on not only produced company but also sampling sites of one piece of charcoal. Therefore, it is not easy to suggest the quantitative characteristics of charcoals prepared from Korean traditional kiln. On the other hand, preparation the quality standard of charcoal is necessary for their special uses such as adsorbent.
  1. Fontana A, Memorie Mat. Fis. Soc. Ital Sci., 1, 679 (1777)
  2. Scheele CW, “Chemical Observations on Air and Fire,” 182-197 (1780), Gregg SJ, Sing KSW, “Adsorption, Surface Area and Porosity,” 2nd edi. Academic Press, London, Chap.1, p1 (1982).
  3. De Saussure NT, Gilbert's Ann., Gregg SJ, Sing KSW, “Adsorption, Surface Area and Porosity,” 2nd edi. Academic Press, London, Chap.1, p1 (1982)., 47, 113 (1814)
  4. Mitscherlich E, Pogg. Ann., Gregg SJ, Sing KSW, “Adsorption, Surface Area and Porosity,” 2nd edi. Academic Press, London, Chap.1, p1, (1982)., 59, 94 (1843)
  5. Kayser H, Annalen der Phys. Chem., 248(4), 526 (1881)
  6. IUPAC “Manual of Symbols and Terminology,” Appendix 2, Pt. 1, Colloid and Surface Chemistry. Pure Appl. Chem., 31(4), 577- 638(1972).
  7. Oh YS, Song TW, J. Haehwa Medicine, 9(1), 461 (2000)
  8. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60(2), 309 (1938)
  9. Lippens BC, de Boer JH, J. Catalysis, 4, 319 (1965)
  10. Horvath G, Kawazoe K, J. Chem. Eng. Jpn., 16, 470 (1983)
  11. Zsigmondy A, Anorg. Chem., 71, 356
  12. Everett DH, Powl JC, J. Chem. Soc.-Faraday Trans., 72, 619 (1976)
  13. Kiselev AV, J. Colloid Interface Sci., 28(3-4), 430 (1968)
  14. Cadenhead DA, Everett DH, “Proceedings of the Conf. on International Carbon and Graphite,” p272, Society of Chemical Industry (1958).
  15. McEnaney B, J. Chem. Soc.-Faraday Trans., 70, 84 (1974)
  16. Deitz VR, Berlin E, J. Colloid Interface Sci., 44(1), 57 (1973)
  17. Pope MI, Gregg SJ, Fuel, 39(3), 267 (1960)
  18. Arnell JC, McDermott HL, “Proceedings of the 2nd International Congress on Surface Activity,” II, p113. Butterworths, London (1957).
  19. Bailey A, Cadenhead DA, Davies DH, Everett DH, Miles AJ, Trans. Faraday Soc., 67, 2311 (1971)