화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.109, 296-305, May, 2022
Determination of kinetic parameters for the sisal residue pyrolysis through thermal analysis
E-mail:
Determining the kinetics of biomass degradation by thermogravimetry is complex due to the existence of numerous parallel and consecutive reactions. The individual use of models available in the literature has limitations regarding the applicability of the data due to high adjustment errors or lack of process information. Thus, a new procedure was proposed to determine the degradation kinetics of sisal residue, at heating rates of 20–80 ℃/min and inert atmosphere. First, the reaction order was determined by the fit model for each heating rate, resulting in approximate values. Then, the activation energy and the pre-exponential factor were determined by free models (Flynn-Wall-Ozawa, Kissinger-Akahira-Sunose, and Friedman). These models were validated from the experimental data of conversion and temperature, together with the calculated kinetic parameters. Friedman’s model was the best fit. Finally, the errors obtained are compatible with those in the literature, indicating that this procedure can be used in kinetics involving biomass pyrolysis.
  1. Gonzalez-Quiroga A, Geem KM, Marin GB, Biomass Convers. Biorefin., 7(3), 305 (2017)
  2. Yang Y, Brammer JG, Mahmood AS, Hornung A, Bioresour. Technol., 169, 794 (2014)
  3. Y.J. Rueda-Ortóñez, L.K. Tinoco-Navarro, É.D. Baroni, K. Tannous, Modeling the kinetics of Liginocellulosic Biomass Pytolysis. In Tannous K, Innovative Solutions in Fluid-Particle Systems and Renewable Energy Management, pp. 92–130. IGI Global, 2015.
  4. Aghbashlo M, Almasi F, Jafari A, Nadian MH, Soltanian S, Lam SS, Tabatabaei M, Renew. Energy, 170, 81 (2021)
  5. Liu WJ, Li WW, Jiang H, Yu HQ, Chem. Rev., 117, 6367 (2017)
  6. Bridgwater AV, Biomass Bioenerg., 38, 68 (2012)
  7. Bridgwater AV, Peacocke GV, Renew. Sust. Energ. Rev., 4(1), 1 (2000)
  8. Venderbosch RH, Prins W, Bioprod. Biorefin., 4(2), 178 (2010)
  9. Ranzi E, Corbetta M, Manenti F, Pierucci S, Chem. Eng. Sci., 110, 2 (2014)
  10. Cai J, Wu W, Liu R, Hubert GW, Green Chem., 15, 1331 (2013)
  11. Mishra RK, Mohanty K, Bioresour. Technol., 251, 63 (2018)
  12. El-Sayed SA, Mostafa ME, Energy Conv. Manag., 85, 165 (2014)
  13. Mandapati RN, Ghodke PK, Fuel, 303, 121285 (2021)
  14. Vinu R, Broadbelt LJ, Energy Environ. Sci., 5(12), 9808 (2012)
  15. Mayes HB, Nolte MW, Beckham GT, Shanks BH, Broadbelt LJ, ACS Sustain. Chem. Eng., 2(6), 1461 (2014)
  16. Zhou X, Nolte MW, Mayes HB, Shanks BH, Broadbelt LJ, Ind. Eng. Chem. Res., 53(34), 13274 (2014)
  17. Zhou X, Nolte MW, Shanks BH, Broadbelt LJ, Ind. Eng. Chem. Res., 53(34), 13290 (2014)
  18. Mayes HB, Nolte MW, Beckham GT, Shanks BH, Broadbelt LJ, ACS Catal., 5(1), 192 (2015)
  19. Zhou X, Mayes HB, Broadbelt LJ, Nolte MW, Shanks BH, Am. Inst. Chem. Eng. J., 62(3), 766 (2016)
  20. Zhou X, Mayes HB, Broadbelt LJ, Nolte MW, Shanks BH, Am. Inst. Chem. Eng. J., 62(3), 778 (2016)
  21. ZHOU X, BROADBELT LJ, VINU R, Mechanistic understanding of thermochemical conversion of polymers and lignocellulosic biomass. In: Van Geem KM, Advances in Chemical Engineering (pp. 95 – 198). Elsevier, Cambridge. (2016)
  22. Horton SR, Mohr RJ, Zhang Y, Petrocelli FP, Klein MT, Energy Fuels, 30(3), 1647 (2016)
  23. Horton SR, Zhang Y, Mohr RJ, Petrocelli FP, Klein MT, Energy Fuels, 30(10), 7904 (2016)
  24. Hou Z, Benetti CA, Klein MT, Virk PS, Energy Fuels, 24(1), 58 (2010)
  25. Klein MT, Virk PS, Energy Fuels, 22(4), 2175 (2008)
  26. Ranzi E, Cuoci A, Faravelli T, Frassoldati A, Migliavacca G, Pierucci S, Sommariva S, Energy Fuels, 22(6), 4292 (2008)
  27. Calonaci M, Grana R, Hemings EB, Bozzano G, Dente M, Ranzi E, Energy Fuels, 24(10), 5727 (2010)
  28. White JE, Catallo WJ, Legendre BL, J. Anal. Appl. Pyrolysis, 91, 1 (2011)
  29. Agrawal RK, Thermochim. Acta, 203, 93 (1992)
  30. Flynn JH, Wall LA, Journal of Research of the National Bureau of Standards. Section A. 70, 487 - 523. In JELLINEK HH, Aspects of degradation and stabilization of polymers. New York: Elsevier, 1978. (1966)
  31. Xiao R, Yang W, Cong X, Dong K, Xu J, Wang D, Yang X, Energy, 201, 117537 (2020)
  32. Singh RK, Pandey D, Patil T, Sawarkar AN, Bioresour. Technol., 310, 123464 (2020)
  33. Cardoso CR, Miranda MR, Santos KG, Ataíde CH, J. Anal. Appl. Pyrolysis, 92(2), 392 (2011)
  34. Jambeiro TA, Silva MF, Pereira LG, Vasconcelos DD, Silva GB, Figueirêdo MB, Pires CA, Energy Fuels, 32(9), 9478 (2018)
  35. Campuzano F, Brown RC, Martínez JD, Renew. Sust. Energ. Rev., 102, 372 (2019)
  36. Wang S, Ru B, Lin H, Dai G, Wang Y, Luo Z, Curr. Organ. Chem., 20(23), 2489 (2016)
  37. Bruzs B, J. Phys. Chem., 30(5), 680 (1926)
  38. Abdelouahed L, Leveneur S, Vernieres-Hassimi L, Balland L, Taouk B, J. Therm. Anal. Calorim., 129(2), 1201 (2017)
  39. Ozawa T, Bolletim Chem. Soc. Jpn., 38, 1881 (1965)
  40. Doyle CD, J. Appl. Polim. Sci., 5(15), 285 (1961)
  41. Coast AW, Redfern JP, J. Polym. Sci. B: Polym. Phys., 3(11), 917 (1965)
  42. Friedman HL, J. Polym. Sci. C: Polym. Sympos., 6(1), 183 (1964)
  43. Emmons HW, Atreya A, Proc. Indian Acad. Sci., 5, 259 (1982)
  44. Mohan D, JR CU, Steele PH, Energy Fuels, 20, 848 (2006)
  45. Rasool T, Srivastava VC, Khan MNS, Biomass Convers. Biorefin., 8, 647 (2018)
  46. Liu H, Chen B, Wang C, Fuel Process. Technol., 208, 106509 (2020)
  47. Ali I, Naqvi SR, Bahadar A, Fuel, 214, 369 (2018)
  48. Lin YC, Cho J, Tompsett GA, Westmoreland PR, Huber GW, J. Phys. Chem. C, 113(46), 20097 (2009)
  49. Antal MJ, Gronli M, Ind. Eng. Chem. Res., 42(8), 1619 (2003)
  50. Liu L, Pang Y, Lv D, Wang K, Wang Y, Process Saf. Environ. Protect., 151, 39 (2021)
  51. Bridgwater AV, Therm. Sci., 8(2), 21 (2004)
  52. Tran QK, Le ML, Ly HW, Woo HC, Kim J, Kim SS, J. Ind. Eng. Chem., 98, 168 (2021)