화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.109, 125-136, May, 2022
Effects of hydrothermal parameters on the physicochemical property and photocatalytic degradation of bisphenol A of Ti-based TiO2 nanomaterials
E-mail:
Effects of hydrothermal parameters on morphology, crystal structure, light absorption, separation efficiency of photo-generated charge carriers, and photocatalytic removal of Bisphenol A (BPA) of Ti-based TiO2 nanomaterials were systematically investigated. Through changing hydrothermal parameters, TiO2 nanobelts, TiO2 nanosheets and TiO2 nanowires were prepared. With increasing NaOH concentration, hydrothermal temperature, and hydrothermal time, more TiO2 with (101) crystal plane grew on Ti substrate, resulting in higher crystallinity. The UV-light absorption enhanced with increasing NaOH concentration, but decreased with improving hydrothermal temperature, hydrothermal time, and HCl concentration. Variation of UV-light absorption was mainly affected by morphology, and UV-light absorption of TiO2 nanomaterials with different morphologies was arranged in order of nanobelts > nanosheets > nanowires. The hydrothermal growth of TiO2 nanomaterials on Ti plate conformed to Ostwald ripening mechanism. Variation trend of photo-generated current was consistent with that of BPA degradation, they both first increased and then decreased within investigated range. The optimal NaOH concentration, hydrothermal temperature, hydrothermal time, and HCl washing concentration were 1 M, 170℃, 28 h, and 0.1 M, respectively. Under this condition, Ti-based TiO2 nanosheets exhibited the highest BPA removal efficiency (92.7%), which was due to highly ordered nanosheet structure, good crystallinity, appropriate UV-light absorption and high separation efficiency of electron-hole pairs.
  1. Fujishima A, Honda K, Nature, 238, 37 (1972)
  2. Wang M, Ioccozia J, Sun L, Lin C, Lin Z, Energy Environ. Sci., 7, 2182 (2014)
  3. Awfa D, Ateia M, Fujii M, Johnson MS, Yoshimura C, Water Res., 142, 26 (2018)
  4. Xiu Z, Guo M, Zhao T, Pan K, Xing Z, Li Z, Zhou W, Chem. Eng. J., 382 (2020)
  5. Rao Z, Lu G, Mahmood A, Shi G, Xie X, Sun J, Appl. Catal. B: Environ., 284 (2021)
  6. Zikalala SA, Kuvarega AT, Madhav H, Mamba BB, Mhlanga SD, Nxumalo EN, Appl. Catal. A: Gen., 604 (2020)
  7. Li D, Zhang X, Zhang W, Chem. Eng. J., 405 (2021)
  8. Fallah M, Zamani-Meymian MR, Rahimi R, Rabbani M, Appl. Surf. Sci., 316, 456 (2014)
  9. Jia J, Li D, Cheng X, Wan J, Yu X, Appl. Catal. A: Gen., 525, 128 (2016)
  10. Ragazzon D, Farstad MH, Schaefer A, Walle LE, Uvdal P, Borg A, Sandell A, Surf. Sci., 633, 102 (2015)
  11. Li D, Cheng X, Yu X, Xing Z, Chem. Eng. J., 279, 994 (2015)
  12. Jia J, Liu D, Wang S, Li H, Ni J, Li X, Tian J, Wang Q, Sep. Purif. Technol., 253 (2020)
  13. Meymian MRZ, Abdolvahab RH, Mehr AK, Appl. Surf. Sci., 480, 593 (2019)
  14. Adán C, Marugán J, Sánchez E, Pablos C, van Grieken R, Electrochim. Acta, 191, 521 (2016)
  15. Feng X, Shankar K, Varghese OK, Paulose M, Latempa TJ, Grimes CA, Nano Lett., 8, 3781 (2008)
  16. Li X, Zhao J, Sun S, Huang L, Qiu Z, Dong P, Zhang Y, Electrochim. Acta, 211, 395 (2016)
  17. Roy P, Berger S, Schmuki P, Angew. Chem.-Int. Edit., 50, 2904 (2011)
  18. Ma B, Xin S, Xin Y, Ma X, Zhang C, Gao M, J. Environ. Chem. Eng., 9 (2021)
  19. Chen Q, Wu S, Xin Y, Chem. Eng. J., 302, 377 (2016)
  20. Hwang YJ, Yang S, Lee H, Appl. Catal. B: Environ., 204, 209 (2017)
  21. Li D, Xing Z, Yu X, Cheng X, Electrochim. Acta, 170, 182 (2015)
  22. Wang C, Zhang X, Zhang Y, Jia Y, Yang J, Sun P, Liu Y, J. Phys. Chem. C, 115, 22276 (2011)
  23. Li D, Yu X, Cheng X, Funct. Mater. Lett., 08, 1550034 (2014)
  24. Gupta T, Samriti, Cho J, Prakash J, Mater. Today Chem., 20 (2021)
  25. Hidayat R, Fadillah G, Wahyuningsih S, Ser. Mater. Sci. Eng., 578 (2019)
  26. Lan Y, Gao XP, Zhu HY, Zheng ZF, Yan TY, Wu F, Ringer SP, Song DY, Funct. Mater., 15, 1310 (2005)
  27. Liu N, Chen X, Zhang J, Schwank JW, Catal. Today, 225, 34 (2014)
  28. Sreekantan S, Wei LC, J. Alloy. Compd., 490, 436 (2010)
  29. Ranjitha A, Muthukumarasamy N, Thambidurai M, Velauthapillai D, Agilan S, Balasundaraprabhu R, Optik, 126, 2491 (2015)
  30. Zhao Y, Gu X, Qiang Y, Thin Solid Films, 520, 2814 (2012)
  31. Xiong J, He L, J. Exp. Nanosci., 12, 384 (2017)
  32. Nian JN, Teng H, J. Phys. Chem. B, 110, 4193 (2006)
  33. Zikalala SA, Kuvarega AT, Mamba BB, Mhlanga SD, Nxumalo EN, Mater. Today Chem., 10, 1 (2018)
  34. Jia J, Li D, Wan J, Yu X, J. Ind. Eng. Chem., 33, 162 (2016)
  35. Zhang X, Li D, Wan J, Yu X, Mater. Sci. Semicond. Process, 43, 47 (2016)
  36. Li D, Jia J, Zheng T, Cheng X, Yu X, Appl. Catal. B: Environ., 188, 259 (2016)
  37. Ma X, Chen Q, Liu G, Zhou Y, Ma D, Xin S, Yu C, Zhang B, Xin Y, Chem. Eng. Sci., 226 (2020)
  38. Calandra P, Ruggirello A, Pistone A, Liveri VT, J. Clust. Sci., 21, 767 (2010)
  39. Calandra P, Lombardo D, Pistone A, Liveri VT, Trusso S, J. Nanopart. Res., 13, 5833 (2011)
  40. Zikalala SA, Selvaraj R, Marzouqi FA, Kuvarega AT, Mamba BB, Mhlanga SD, Nxumalo EN, J. Environ. Chem. Eng., 8, 104082 (2020)
  41. Bade BR, Rondiya S, Bhopale SR, Dzade NY, Kamble MM, Rokade A, Nasane MP, More MA, Jadkar SR, Funde AM, SN Appl. Sci., 1, 1073 (2019)
  42. Shao F, Sun J, Gao L, Yang S, Luo J, J. Phys. Chem. C, 115, 1819 (2011)
  43. Chen L, Zhou Y, Dai H, Li Z, Yu T, Liu J, Zou Z, J. Mater. Chem. A, 1, 11790 (2013)
  44. Montenegro-Ayo R, Barrios AC, Mondal I, Bhagat K, Morales-Gomero JC, Abbaszadegan M, Westerhoff P, Perreault F, Garcia-Segura S, Sci. Total Environ., 737, 140044 (2020)
  45. Zu M, Zhou X, Zhang S, Qian S, Li DS, Liu X, Zhang S, J. Mater. Sci. Technol., 78, 202 (2021)
  46. Wang H, Hu L, Han W, J. Alloy. Compd., 854 (2021)