화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.39, No.7, 1768-1774, July, 2022
Chitosan-based porous carbon as a support for Zn-based catalysts in acetylene acetoxylation
E-mail:,
Using the biomass material chitosan as a precursor and potassium citrate (PC) as a substitute for traditional corrosive activators such as KOH and ZnCl2, a chitosan-based porous carbon material with high specific surface area was successfully prepared and used as a support for the catalytic acetylene acetoxylation reaction. By controlling the PC content and the calcination temperature, chitosan-based porous carbon with a suitable pore structure and abundant surface oxygen functional groups was obtained. The inductively coupled plasma analysis confirmed that the zinc content of the 0.9Zn/CS-PC1-800 catalyst was about 14 wt%, and the acetic acid conversion reached 81%. Furthermore, the scanning electron microscopy and Brunauer-Emmett-Teller (BET) analysis showed that the catalyst carrier was mesoporous carbon material, and different PC content formed different pore size distribution at different calcination temperatures. In addition, X-ray photoelectron spectroscopy analysis demonstrated that the content of O in chitosan- based porous carbon was rich, and PC consumed the O content on the surface of carbon materials during activation. Because O content and pore size structure on carrier surface are closely related to acetic acid conversion, reasonable PC content and calcination temperature are very important for acetic acid conversion.
  1. Nakason C, Kaewsakul W, Kaesaman A, J. Elastomers Plast., 44, 89 (2012)
  2. Yuliestyan A, Cuadri AA, García-Morales M, Partal P, Rheol. Acta, 57, 71 (2018)
  3. Tambe SP, Singh SK, Patri M, Kumar D, Prog. Org. Coat., 62, 382 (2008)
  4. Acosta A, Gallio E, Zanatta P, Schulz H, Delucis RDA, Gatto D, Fibers Polym., 22, 745 (2021)
  5. Marques E, Mancha PJ, Med. Phys., 45, 1715 (2018)
  6. Schobert H, Chem. Rev., 114, 1743 (2014)
  7. Morrow BA, J. Catal., 86, 328 (1984)
  8. He P, Huang L, Wu X, Xu Z, Zhu M, Wang X, Dai B, Catalysts, 8, 239 (2018)
  9. Wu X, He P, Wang X, Dai B, Chem. Eng. J., 309, 172 (2017)
  10. Zhu F, Li J, Zhu M, Kang L, Nanomaterials, 11, 1174 (2021)
  11. Zahedifar M, Es-Haghi A, Zhiani R, Sadeghzadeh SM, RSC Adv., 9, 6494 (2019)
  12. Varma RS, ACS Sustainable Chem. Eng., 9, 6494 (2019)
  13. Abdullah S, Hanapi N, Azid A, Umar R, Juahira H, Renew. Sust. Energ. Rev., 70, 1040 (2016)
  14. Chen K, Weng S, Lu J, Gu J, Chen G, Hu O, Jiang X, Hou L, Microporous Mesoporous Mater., 320, 111106 (2021)
  15. Yongde X, Zhuxian Y, Robert M, Nanoscale, 2, 639 (2010)
  16. Jin J, Tanaka S, Egashira Y, Nishiyama N, Carbon, 48, 1985 (2010)
  17. Dai C, Wan J, Yang J, Qu S, Jin T, Ma F, Shao J, Appl. Surf. Sci., 444, 105 (2018)
  18. Ouyang T, Zhang T, Wang H, Yang F, Yan J, Zhu K, Ye K, Wang G, Zhou L, Cheng K, Cao D, Chem. Eng. J., 352, 459 (2018)
  19. Rajesh M, Manikandan R, Park S, Kim BC, Cho WJ, Yu KH, Raj CJ, Int. J. Energy Res., 44, 8591 (2020)
  20. Shao J, Ma F, Wu G, Dai C, Geng W, Song S, Wan J, Chem. Eng. J., 321, 301 (2017)
  21. Zhang L, You T, Zhou T, Zhou X, Xu F, ACS Appl. Mater. Interfaces, 8, 13918 (2016)
  22. Gao J, Li L, Zeng Z, Ma X, Chen R, Wang C, Zhou K, J. Mater. Sci., 54, 6186 (2019)
  23. Luo X, Li S, Xu H, Zou X, Wang Y, Cheng J, Li X, Shen Z, Wang Y, Cui L, J. Colloid Interface Sci., 582, 940 (2021)
  24. Hou L, Yang W, Li Y, Wang P, Jiang B, Xu C, Zhang C, Huang G, Yang F, Li Y, Chem. Eng. J., 417, 129289 (2021)
  25. Bai JY, Wang LJ, Zhang YJ, Wen CF, Wang XL, Yang HG, Appl. Catal. B: Environ., 266, 118590 (2020)
  26. Tian S, Dai J, Jiang Y, Chang Z, Xie A, He J, Zhang R, Yan Y, J. Colloid Interface Sci., 505, 858 (2017)
  27. Yu XY, Luo T, Zhang YX, Jia Y, Zhu BJ, Fu XC, Liu JH, Huang XJ, ACS Appl. Mater. Interfaces, 3, 2585 (2011)
  28. Puziy AM, Poddubnaya OI, Socha RP, Gurgul J, Wisniewski M, Carbon, 46, 2113 (2008)