화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.108, 288-307, April, 2022
The precision-complexity binomial to achieve the best mathematicalthermodynamic modelling on the Gibbs-function and its effect on the separation processes design
E-mail:
A modelling methodology based on the precision-complexity binomial has been applied to a parametric model established for the Gibbs function, in order to achieve the best parameterization. This methodology is integrated into a multi-objective optimization method to describe, as accurately as possible, the real behaviour of a set of binary solutions of butyl butanoate-alkanes, for which several of their properties have been experimentally determined. The optimization is addressed with a genetic algorithm with elitism-control that favours the convergence, providing well distributed results along the efficientfronts. A database of, approximately 1500 values, was generated, which used to check the numerical procedure. The representation of different properties is acceptably described with the multiproperty model constituted by the gE-model and its successive derivatives. In relation to other models, the approach carried out significantly improves the results because, in addition, it includes an estimation of the volumetric effects. A practical application was carried out with the simulation of a separation process for one of the systems that present a complex behaviour, providing solutions for its implementation in an industrial scale.
  1. Pérez E, Ortega J, Fernández L, Wisniak J, Canosa J, Fluid Phase Equilib., 412, 79 (2016)
  2. Ríos R, Ortega J, Sosa A, Fernández L, Ind. Eng. Chem. Res., 57, 3410 (2018)
  3. Herrera C, Fernández L, Ortega J, López S, Sosa A, Ind. Eng. Chem. Res., 58, 973 (2019)
  4. Ortega J, Fernández L, Sabater G, Fluid Phase Equilib., 402, 38 (2015)
  5. Ortega J, Fernández L, Sosa A, Lorenzo B, Ríos R, Wisniak J, Ind. Eng. Chem. Res., 59, 8346 (2020)
  6. Fernández L, Ortega J, Wisniak J, AIChE J., 63, 5125 (2017)
  7. Fernández L, Ortega J, Wisniak J, Comput. Chem. Eng., 106, 437 (2017)
  8. Smith JM, Van Ness HC, Abbot MW, Introduction to Chemical Engineering Thermodynamics, McGraw-Hill, Singapore, 2005.
  9. Deb K, Goel T, Controlled elitist non-dominated sorting genetic algorithms for better convergence, in: Zitzler E, Thiele L, Deb K, Coello-Coello C, Corne, D. (Eds.), Evolutionary Multi-Criterion Optimization SE-5, Lecture Notes in Computer Science, Springer, Berlin-Heidelberg, 2001, pp. 67–81,Controlled elitist non-dominated sorting genetic algorithms for better convergence, in: Zitzler, E., Thiele, L., Deb, K., Coello-Coello, C., Corne, D. (Eds.), Evolutionary Multi-Criterion Optimization SE-5, Lecture Notes in Computer Science, Springer, Berlin-Heidelberg, pp. 67–81, 2001.
  10. Deb K, Pratap A, Agarwal S, Meyarivan T, Trans. Evol. Comput., 6, 182 (2002)
  11. Sosa A, Fernández L, Ortega J, Jiménez L, Ind. Eng. Chem. Res., 58, 12876 (2019)
  12. Fernández L, Pérez E, Ortega J, Canosa J, Wisniak J, J. Chem. Eng. Data, 55, 5519 (2010)
  13. Garcıa-Garabal S, Segade L, Franjo C, Jiménez E, Piñero MM, Legido JL, Paz-Andrade MI, J. Therm. Anal. Calorim., 52, 815 (1998)
  14. Garcıa-Garabal S, Jiménez E, Franjo C, Segade L, Casas L, Legido JL, Paz-Andrade MI, Fluid Phase Equilib., 182, 265 (2001)
  15. Garcıa-Garabal S, Jiménez E, Segade L, Casas L, Franjo C, Legido JL, Paz-Andrade MI, Thermochim. Acta, 405, 147 (2003)
  16. Ilic PV, Jiménez E, Legido JL, Fernández J, Paz-Andrade MI, J. Chem. Thermodyn., 22, 865 (1990)
  17. Lagourette B, Boned C, Saint-Guirons H, Xans P, Zhou H, Meas. Sci. Technol., 3, 699 (1992)
  18. Mrazek RV, Van Ness HC, AIChE J., 7, 190 (1961)
  19. Ortega J, Matos JS, Paz-Andrade MI, Jiménez E, J. Chem. Thermodyn., 17, 1127 (1985)
  20. Ortega J, Navas A, Sabater G, Ascanio M, Plácido J, J. Chem. Thermodyn., 39, 1514 (2007)
  21. Ríos R, Ortega J, Fernández L, de Nuez I, Wisniak J, J. Chem. Eng. Data, 59, 125 (2014)
  22. Ortega J, Plácido J, Toledo FJ, Vidal M, Siimer E, Legido JL, Phys. Chem. Chem. Phys., 1, 2967 (1999)
  23. Toledo FJ, Ortega J, Chaar M, Vidal M, J. Chem. Thermodyn., 32, 1013 (2000)
  24. Tsonopoulos C, AIChE J., 20, 263 (1974)
  25. Prausnitz JM, Lichtenthaler RN, de Azevedo EG, Molecular thermodynamics of fluid-phase equilibria, in: Prentice Hall International Series in the Physical and Chemical Engineering Sciences. Prentice Hall PTR, Upper Saddle River, New Jersey, 1999.
  26. Wisniak J, Ortega J, Fernández L, J. Chem. Thermodyn., 105, 385 (2017)
  27. Borchers B, Mitchell JE, Comput. Oper. Res., 21, 359 (1994)
  28. Gupta OK, Ravindran A, Manage. Sci., 31, 1533 (1985)
  29. Vecchietti A, Lee S, Grossmann IE, Comput. Chem. Eng., 27, 433 (2003)
  30. Miettinen K, Nonlinear multiobjective optimization, International Series in Operations Research & Management Science. Springer US, Boston, MA. 1998.
  31. Ortega J, Espiau F, Wisniak J, Ind. Eng. Chem. Res., 49, 406 (2010)
  32. Ortega J, Espiau F, Ind. Eng. Chem. Res., 42, 4978 (2003)
  33. Jimenez E, Romani L, Wilhelm E, Roux-Desgranges G, Grolier JPE, J. Chem. Thermodyn., 26, 817 (1994)
  34. Ihmels EC, Gmehling J, Ind. Eng. Chem. Res., 40, 4470 (2001)
  35. Tait PG, Report on some of the physical properties of fresh water and of sea water, in: Thomson CW., Murray, J. (Eds.), 1873-76. Physics and Chemistry - Vol. 2 (1888).
  36. Akaike H, Information theory and an extension of the maximum likelihood principle, in: Petrov BN, Csaki F, (Eds.), 2nd International Symposium on Information Theory. pp. 267–281, 1973.
  37. Burnham KP, Anderson DR, Sociol. Methods Res., 33, 261 (2004)
  38. Coello C, Lamont G, Van Veldhuisen D, Evolutionary algorithms for solving multi-objective problems, 2nd ed. Springer, US. 2007.
  39. Bossek J, ecr 2.0: A modular framework for evolutionary computation in R, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion. ACM, New York, NY, USA, pp. 1187–1193. 2017.
  40. Liu DC, Nocedal J, Math. Program., 45, 503 (1989)
  41. Johnson SG, The NLopt nonlinear-optimization package (v.2.6.1), 2019.
  42. Ypma J, Johnson SG, The nloptr: R Interface to NLopt (v1.2.2.2), 2020.
  43. Gmehling J, Li J, Schiller MA, Ind. Eng. Chem. Res., 32(1), 178 (1993)
  44. Renon H, Prausnitz JM, AIChE J., 14, 135 (1968)
  45. Ko M, Im J, Sung JY, Kim H, J. Chem. Eng. Data, 52, 1464 (2007)
  46. Frenkel M, Chirico RD, Diky V, Yan X, Dong Q, Muzny C, J. Chem. Inf. Model., 45, 816 (2005)