화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.33, No.1, 11-16, February, 2022
마이크로진동자 기반 금속유기골격체의 기체 흡탈착 분석
Gas Sorption Analysis of Metal-organic Frameworks using Microresonators
E-mail:
초록
금속유기골격체(metal-organic frameworks, MOFs)는 나노사이즈의 기공을 가진 다공성 물질로, 금속이온과 유기리간드의 종류에 따라 기체흡착도 및 기공크기의 조절이 가능하다. 이러한 장점을 이용하여, 기체 포집 및 분리, 그리고 기체센서분야에서 금속유기골격체에 대한 연구가 많이 이루어지고 있다. 신속하고, 정량적인 기체 흡탈착 분석을 위해서는, 센서 표면에 균일한 필름 형태의 다양한 MOF 구조체를 형성해야 한다. 본 총설논문에서는 양극산화알루미늄, 산화아연 나노막대, 구리 박막으로부터 직접합성법을 이용하여 각각 MIL-53 (Al), ZIF-8, Cu-BDC와 같은 MOF를 마이크로진동자 센서 표면에 균일하게 합성하는 방법에 대해 정리하였다. 또한, 대표적인 마이크로진동자인 수정진동자미세 저울과 마이크로캔틸레버의 작동원리와 금속유기골격체에 기체흡착 시 변하는 신호해석에 대한 내용을 다룬다. 이를 통해, 마이크로진동자 기반 금속유기골격체의 기체 흡탈착 분석에 대한 이해를 높이고자 한다.
Metal-organic frameworks (MOFs) are porous materials with nano-sized pores. The degree of gas adsorption and pore size can be controlled according to types of metal ions and organic ligands. Many studies have been conducted on MOFs in the fields of gas storage and separation, and gas sensors. For rapid and quantitative gas adsorption/desorption analyses, it is necessary to form various MOF structures in uniform films on a sensor surface. In this review, some of representative direct methods for uniformly synthesizing MOFs such as MIL-53 (Al), ZIF-8, and Cu-BDC from anodized aluminum oxide, zinc oxide nanorods, and copper thin films, respectively on the surface of a microresonator are highlighted. In addition, the operation principle of quartz crystal microbalance and microcantilever, which are representative microresonators, and the interpretation of signals that change when gas is adsorbed to MOFs are covered. This is intended to enhance the understanding of gas adsorption/desorption analysis of MOFs using microresonators.
  1. James SL, Chem. Soc. Rev., 32, 276 (2003)
  2. Liu J, Chen L, Cui H, Zhang J, Zhang L, Su CY, Chem. Soc. Rev., 43, 6011 (2014)
  3. He Y, Zhou W, Qian G, Chen B, Chem. Soc. Rev., 43, 5657 (2014)
  4. Li JR, Sculley J, Zhou HC, Chem. Rev., 112(2), 869 (2012)
  5. Li Y, Yang RT, Langmuir, 23(26), 12937 (2007)
  6. Glover TG, Peterson GW, Schindler BJ, Britt D, Yaghi O, Chem. Eng. Sci., 66(2), 163 (2011)
  7. Kitagawa S, Matsuda R, Coord. Chem. Rev., 251, 2490 (2007)
  8. Chen F, Lai D, Guo L, Wang J, Zhang P, Wu K, Zhang Z, Yang Q, Yang Y, Chen B, Ren Q, Bao Z, J. Am. Chem. Soc., 143, 9040 (2021)
  9. Song XD, Wang S, Hao C, Qiu JS, Inorg. Chem. Commun., 46, 277 (2014)
  10. Martinez-Ahumada E, et al., Organometallics, 39, 883 (2020)
  11. Sun W, Lin L, Peng X, Smit B, AIChE. J., 60, 2314 (2014)
  12. Claudino A, Soares JL, Moreira RFPM, Jose HJ, Carbon, 42, 1483 (2004)
  13. Cavenati S, Grande CA, Rodrigues AE, J. Chem. Eng. Data, 49(4), 1095 (2004)
  14. Mesfer MKA, Danish M, J. Environ. Chem. Eng., 6, 4514 (2018)
  15. Datar R, Kim S, Jeon S, Hesketh P, Manalis S, Boisen A, Thundat T, MRS. Bull., 34, 449 (2009)
  16. Lee D, Shin N, Lee KH, Jeon S, Sens. Actuators B-Chem., 137, 561 (2009)
  17. Yim C, Lee M, Yun M, Kim GH, Kim KT, Jeon S, Sci. Rep., 5, 10674 (2015)
  18. Yim C, Jeon S, RSC. Adv., 5, 67454 (2015)
  19. Okada K, Ricco R, Tokudome Y, Styles MJ, Hill AJ, Takahashi M, Falcaro P, Adv. Funct. Mater., 24, 1969 (2013)
  20. Stassen I, Campagnol N, Fransaer J, Vereecken P, Vos DD, Ameloot R, CrystEngComm, 15, 9308 (2013)
  21. Hwang Y, Sohn H, Phan A, Yaghi OM, Candler RN, Nano Lett., 13, 5271 (2013)
  22. Giessibl FJ, Rev. Mod. Phys., 75, 949 (2003)
  23. Thundat T, Warmack RJ, Chen GY, Allison DP, Appl. Phys. Lett., 64, 2894 (1994)
  24. Yim C, Yun M, Kim S, Jung N, Lim SH, Lee M, Rhee SW, Thundat T, Jeon S, Jpn. J. Appl. Phys., 51, 08KB07 (2012)
  25. TTPIO, Warmack RJ, Nanoscale Microscale Thermophys. Eng., 1, 185 (1997)
  26. Yim C, Yun M, Jung N, Jeon S, Anal. Chem., 84, 8179 (2012)
  27. Abe T, Easshi M, Sens. Actuators Phys., 82, 139 (2000)
  28. Sauerbrey G, The Use of Quartz Crystal Oscillators for Weighing Thin Layers and for Microweighing Applications, 1st ed., 1-17 (1991).