화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.106, 77-85, February, 2022
Precisely controlled preparation of uniform nanocrystalline cellulose via microfluidic technology
E-mail:,
As a new type of biomass-based molecular material, nanocrystalline cellulose (NCC) has become a research hotspot in many fields. In present work, a novel microfluidic technology was employed to produce NCC from microcrystalline cellulose (MCC) via sulfuric acid hydrolysis. The microfluidic chip was designed and made with complete load-bearing reaction according to flow characteristics. A closed reaction environment and fully automated operations can ensure the safety of experimenters. NCC (MN-60) with high yield and uniformity was obtained via acid hydrolysis in microfluidic system by 60 % sulfuric acid solution at 35 °C for 40 min. The characteristics of MN-60 and conventional method NCC (N-60) under the same reaction conditions were compared. It was found that the yield of MN-60 reached 48.13%, while it was only 17.30 % in the absence of microfluidic chip. Although the results showed that MN-60 and N-60 exhibited similar rod-like structures, the size distribution of MN-60 was narrower than that of N-60. Furthermore, the width, length, and height of MN-60 were 15 ± 5 nm, 150 ± 75 nm, and 5 ± 2 nm, respectively. The main functional groups and crystal forms of MN-60 were similar to MCC, but the crystallization index of MN-60 was higher than MCC. In conclusion, microfluidic technology could realize the preparation of high-yield and uniform NCC.
  1. Eronen P, Osterberg M, Heikkinen S, Tenkanen M, Laine J, Carbohydr. Polym., 86, 1281 (2011)
  2. Tang Y, Yang S, Zhang N, Zhang J, Cellulose, 21, 335 (2014)
  3. Beltramino F, Roncero MB, Vidal T, Valls C, Carbohydr. Polym., 189, 39 (208)
  4. Jordan JH, Easson MW, Dien B, Thompson S, Condon BD, Cellulose, 26, 5959 (2019)
  5. Kim DY, Lee BM, Koo DH, Kang PH, Jeun JP, Cellulose, 23, 3039 (2016)
  6. Cao, D, Xing Y, Tantratian K, Wang X, Ma Y, Mukhopadhyay A, Cheng Z, Zhang Q, Jiao Y, Chen L, Adv. Mater., 31, 1807313.180733 (2019)
  7. Mondal S, Carbohydr. Polym., 163, 301 (2017)
  8. Zhu H, Yang X, Cranston ED, Zhu SP, Adv. Mater., 28(35), 7652 (2016)
  9. Letchford J, Wasserman B, Ye W, Hamad HB, Int. J. Nanomed., 6, 321 (2011)
  10. de Olyveira GM, Costa LMM, Gois PBP, Basmaji P, Filho LX, J. Nanotechnol. Eng. Med., 2, 031011 (2011)
  11. Kidd T, Folken A, Fritch B, Bradley D, Bull. Am. Phys. Soc. (2016).
  12. Kang L, Chen P, Wang B, Jia J, Li J, Zeng J, Cheng Z, Gao W, Xu J, Chen K, Cellulose, 27, 905 (2020)
  13. Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O, Curr. Opin. Biotechnol., 39, 76 (2016)
  14. Cheng Z, Ma Y, Yang L, Cheng F, Huang Z, Natan A, Li H, Chen Y, Cao D, Huang Z, Adv. Opt. Mater., 7, 197003 (2019)
  15. Mukhopadhyay A, Cheng Z, Natan A, Ma Y, Yang Y, Cao D, Wang W, Zhu H, Nano Lett., 19, 8979 (2019)
  16. Nair SS, Zhu J, Deng Y, Ragauskas AJ, Sustainable Chem. Processes, 2, 23 (2014)
  17. Velve-Casquillas G, Le Berre M, Piel M, Tran PT, Nano Today, 5(1), 28 (2010)
  18. Gaharwar AK, Detamore MS, Khademhosseini A, Ann. Biomed. Eng., 44, 1861 (2016)
  19. Qasaimeh MA, Ricoult SG, Juncker D, Lab Chip, 13 (2012)
  20. Lin WY, Wang YJ, Wang ST, Tseng HR, Nano Today, 4(6), 470 (2009)
  21. Lu MQ, Ozcelik A, Grigsby CL, Zhao YH, Guo F, Leong KW, Huang TJ, Nano Today, 11(6), 778 (2016)
  22. Wang J Song Y, small, 13, 160408 (2017)
  23. Ferraro D, Lin Y, Teste B, Talbot D, Malaquin L, Descroix S, Abou-Hassan A, Chem. Commun., 51, 16904 (2015)
  24. Elvira KS, Solvas XCI, Wootton RC, Demello AJ, Nat. Chem., 5, 905 (2013)
  25. Khan SA, Gunther A, Schmidt MA, Jensen KF, Langmuir, 20(20), 8604 (2004)
  26. Song Y, Hormes J, Kumar CS, small, 4, 698 (2008)
  27. Lan W, Li S, Xu J, Luo G, Microfluid. Nanofluid., 13, 491 (2012)
  28. Luis JP, et al., ACS Nano, 8, 818 (2014)
  29. Lan W, Li S, Xu J, Luo G, Lab Chip, 11 (2011)
  30. Xiaojun W, Runyu L, Jinsong Z, Zheng C, Bin W, Qijun D, Wenhua G, Kefu C, Jun X, Cellulose, 27, 4029 (2020)
  31. Reynolds O, Philos. Trans. R. Soc. Lond., 935 (1883).
  32. Mandal A, Chakrabarty D, Carbohydr. Polym., 86, 1291 (2011)
  33. Soleymani A, Kolehmainen E, Turunen I, Chem. Eng. J., 135 (2008)
  34. Tabeling P, Curr. Opin. Biotechnol., 25C, 129 (2014)
  35. Whitesides GM, Nature, 442, 368 (2006)
  36. Stroock AD, Dertinger SK, Ajdari A, Mezic´ I, Stone H, Whitesides GM, Science, 295, 647 (2002)
  37. Wen CY, Yeh CP, Tsai CH, Fu LM, Electrophoresis, (2009).
  38. Bally F, Serra CA, Hessel V, Hadziioannou G, Chem. Eng. Sci., 66(7), 1449 (2011)
  39. Ottino J, The Kinematics of Mixing: Stretching, Chaos, and Transport, Cambridge University Press, 1989.
  40. Parsa MK, Hormozi F, Jafari D, Comput. Fluids, 105, 82 (2014)
  41. Mengeaud V, Josserand J, Girault HH, Anal. Chem., 74, 4279 (2002)
  42. Hamad WY, Hu TQ, Canad. J. Chem. Eng., 88, 392 (2010)
  43. Liu HY, Zhang HA, Wang J, Wei JF, Zhang Y, J. Chem. Technol. Biotechnol., 92(8), 2171 (2017)
  44. Fan JS, Li YH, Carbohydr. Polym., 88, 1184 (2012)
  45. Usov I, Nystrom G, Adamcik J, Handschin S, Schutz C, Fall A, Bergstrom L, Mezzenga R, Nat. Commun., 6, 7564 (2015)
  46. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C, Biomacromolecules, 9(1), 57 (2008)
  47. Pranger L, Tannenbaum R, Macromolecules, 41(22), 8682 (2008)
  48. Tang L, Huang, Sci. Silvae Sinicae, 47, 144 (2011)
  49. Kian LK, Jawaid M, Ariffin H, Karim Z, Int. J. Biol. Macromolecules, S0141813017350043 (2018).
  50. Atef M, Rezaei M, Behrooz R, Int. J. Biol. Macromol. (2014).
  51. Yang J, in Manufacturing of Nanocrystalline Cellulose, (2017).
  52. Liu Q, Hao W, Yang Y, Richel A, Ouyang C, Liu H, Guo R, Xia X, Yang J, Song J, Goffin D, Nano LIFE, 04, 144101 (2014)
  53. Khili F, Borges J, Almeida PL, Boukherroub R, Omrani AD, Waste Biomass Valorization, 10, 1913 (2019)
  54. Yao Y, Zhang Y, Zhao H, Liu S, J. Cellulose Sci. Technol. (2017).
  55. Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B, Vib. Spectrosc., 36, 23 (2004)
  56. Jahan MS, He Z, Ni Y, Cellulose, 18, 451 (2011)
  57. Zaman M, Xiao H, Chibante F, Ni Y, Carbohydr. Polym., 89, 163 (2012)
  58. Marechal Y, Chanzy H, J. Mol. Struct., 523, 183 (2000)
  59. Haafiz MM, Eichhorn S, Hassan A, Jawaid M, Carbohydr. Polym., 93, 628 (2013)
  60. Ahuja D, Kaushik A, Singh M, Int. J. Biol. Macromol., 107, 1294 (2018)
  61. Lu P, Hsieh YL, Carbohydr. Polym., 82, 329 (2010)
  62. Ewulonu CM, Liu X, Wu M, Huang Y, Cellulose, 26, 4371 (2019)
  63. Savadekar NR, Mhaske ST, Carbohydr. Polym., 89, 146 (2012)
  64. Li QQ, Renneckar S, Biomacromolecules, 12(3), 650 (2011)
  65. Liu C, Li B, Du H, Lv D, Zhang Y, Yu G, Mu X, Peng H, Carbohydr. Polym., 716 (2016).
  66. Roman M, Winter WT, Biomacromolecules, 5(5), 1671 (2004)
  67. Teixeira EDM, Correa AC, Manzoli A, Leite FDL, Oliveira CRD, Mattoso LHC, Cellulose, 17, 595 (2010)