화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.12, 704-709, December, 2021
플럭스 염화물 조성이 Zn-Mg-Al 3원계 합금도금층의 미세조직 및 도금성에 미치는 영향
Effect of Flux Chloride Composition on Microstructure and Coating Properties of Zn-Mg-Al Ternary Alloy Coated Steel Product
E-mail:
In the flux used in the batch galvanizing process, the effect of the component ratio of NH₄Cl to ZnCl₂ on the microstructure, coating adhesion, and corrosion resistance of Zn-Mg-Al ternary alloy-coated steel is evaluated. Many defects such as cracks and bare spots are formed inside the Zn-Mg-Al coating layer during treatment with the flux composition generally used for Zn coating. Deterioration of the coating property is due to the formation of AlClx mixture generated by the reaction of Al element and chloride in the flux. The coatability of the Zn-Mg-Al alloy coating is improved by increasing the content of ZnCl2 in the flux to reduce the amount of chlorine reacting with Al while maintaining the flux effect and the coating adhesion is improved as the component ratio of NH4Cl to ZnCl2 decreases. Zn-Mg-Al alloy-coated steel products treated with the optimized flux composition of NH₄Cl·3ZnCl₂ show superior corrosion resistance compared to Zn-coated steel products, even with a coating weight of 60 %.
  1. Shih HC, Hsu JW, Sun CN, Chung SC, Surf. Coat. Technol., 150, 70 (2002)
  2. Pistofidis N, Vourlias G, Konidaris S, Pavlidou E, Stergiou A, Stergioudis G, Mater. Lett., 60, 786 (2006)
  3. Lee JW, Oh SY, Park B, Oh MS, Kim SJ, Korean J. Met. Mater., 58, 610 (2020)
  4. Marder AR, Prog. Mater. Sci., 45(3), 191 (2000)
  5. Amadeh A, Pahlevani B, Heshmati-Manesh S, Corrosion Sci., 44, 2321 (2002)
  6. Xu J, Li B, Mi X, Hans J. Chem. Eng. Technol., 6, 71 (2016)
  7. Sjoukes F, Anti-Corros. Methods Mater., 37, 12 (1990)
  8. Pistofidis N, Vourlias G, Konidaris S, Pavlidou E, Stergioudis G, Tsipas D, Cryst. Res. Technol., 41, 759 (2006)
  9. Cook TH, Met. Finish., 101, 22 (2003)
  10. Lee JW, Park BR, Oh SY, Yun DW, Hwang JK, Oh MS, Kim SJ, Corrosion Sci., 160, 108170 (2019)
  11. Oh MS, Kim SH, Kim JS, Lee JW, Shon JH, Jin YS, Met. Mater. Int., 22, 26 (2016)
  12. Schuerz S, Fleischanderl M, Luckeneder GH, Preis K, Haunschmied T, Mori G, Kneissl AC, Corrosion Sci., 51, 2355 (2009)
  13. Du A, Huo Y, Hu J, Adv. Mater. Res., 433, 111 (2012)
  14. Manna M, Surf. Coat. Technol., 205, 3716 (2011)
  15. Liu T, Ma R, Fan Y, Du A, Zhao X, Wen M, Cao X, Surf. Coat. Technol., 337, 270 (2018)
  16. Rocha LA, Barbosa MA, Corrosion, 47, 536 (1991)
  17. Saternus M, Kania H, Materials., 14, 1259 (2021)
  18. ASTM international. Retrieved December 17, 2021 from https://www.astm.org/b0117-19.html.
  19. Jordan CE, Marder AR, J. Mater. Sci., 32(21), 5593 (1997)
  20. Kopycinski D, Guzik E, Solid State Phenom., 197, 77 (2013)
  21. Lynch RF, J. Met., 8, 39 (1987)
  22. Chen L, Fourmentin R, Mcdermid JR, Metall. Mater. Trans. A., 39, 2128 (2008)
  23. Harada T, Bull. Chem. Soc. Jpn., 10, 379 (1935)
  24. Maass P, Peissker P, Handbook of Hot-dip Galvanization, p.29-90, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2011).
  25. Asgari H, Toroghinejad MR, Golozar MA, Curr. Appl. Phys., 9(1), 59 (2009)
  26. Krieg R, Vimalanandan A, Rohwerder M, J. Electrochem. Soc., 161(3), C156 (2014)
  27. Diler E, Rouvellou B, Rioual S, Lescop B, Vien GN, Thierry D, Corrosion Sci., 87, 111 (2014)
  28. Dutta M, Halder AK, Singh SB, Surf. Coat. Technol., 205, 2578 (2010)
  29. Hosking NC, Strom MA, Shipway PH, Rudd CD, Corrosion Sci., 49, 3669 (2007)