화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.6, 627-631, December, 2021
유도가열 시스템을 이용한 Ni계 촉매의 톨루엔 산화 반응 특성 연구
A Study on Toluene Oxidation Reaction Characteristics of Ni-Based Catalyst in Induction Heating System
E-mail:
초록
휘발성유기화합물을 제거하기 위한 기존 촉매 시스템의 문제를 해결하고자 유도가열 촉매 시스템에 대한 연구를 수행하였다. 본 연구에서는 3종류의 Ni계 상용촉매를 적용하였으며, 촉매 부피, 조성, 열처리 분위기, 코일 내 위치를 포함한 유도가열 반응 특성을 조사하였다. 촉매의 조성 및 부피는 유도가열 시스템에 의한 발열 및 톨루엔 산화 성능에 영향을 미쳤다. 특히 철이 첨가된 촉매는 99% 이상의 Ni로 구성된 촉매에 비해 높은 발열을 나타내었으나 낮은 톨루엔 산화 성능을 나타내었다. 또한 Ni계 촉매의 열처리에 있어 공기 분위기는 촉매의 성능을 급격히 저하시킨다. 유도가열 시스템에서 촉매는 코일 내 중심에 위치하는 것이 최적 조건으로 나타났다. 연구를 통해 도출한 최적의 조건에서 촉매를 7회 반복 실험하였으며, 유사한 성능을 확인하였다.
Research on induction heating catalyst system was conducted to solve problems of the existing catalyst system for removing volatile organic compounds. In the present study, three types of Ni-based commercial catalysts were employed, and induction heating reaction characteristics including the catalyst volume, composition, heat treatment atmosphere, and position in the coil were investigated. The composition and volume of the catalyst affected the exothermic and toluene oxidation performance in the induction heating system. In particular, the Fe-added catalyst showed high exothermic performance compared to that of other catalysts consisting of more than 99% Ni, but had low toluene oxidation performance. In addition, the heat treatment in an air atmosphere of the Ni-based catalyst drastically reduced the performance. In the induction heating system, the optimal condition for the catalyst was to be located in the center of the coil. The catalyst showed similar activities among seven repeated experiments under the optimal condition derived from this work.
  1. He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao ZP, Chem. Rev., 119(7), 4471 (2019)
  2. Ojala S, Pitkaaho S, Laitinen T, et al., Top. Catal., 54, 1224 (2011)
  3. Amann M, Lutz M, J. Hazard. Mater., 78(1-3), 41 (2000)
  4. Huang RJ, Zhang YL, Bozzetti C, Ho KF, Cao JJ, Han YM, Daellenbach KR, Slowik JG, Platt SM, Canonaco F, Zotter P, Wolf R, Pieber SM, Bruns EA, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An ZS, Szidat S, Nature, 514(7521), 218 (2014)
  5. Kim Y, Kim DY, Jung MJ, Kim MI, Lee YS, Appl. Chem. Eng., 24(3), 314 (2013)
  6. Warahena ASK, Chuah YK, Environ. Sci. Technol., 43, 6101 (2009)
  7. Heymes F, Manno-Demoustier P, Charbit F, Fanlo JL, Moulin P, Chem. Eng. J., 115(3), 225 (2006)
  8. Heymes F, Demoustier PM, Charbit F, Fanlo JL, Moulin P, Chem. Eng. Sci., 62(9), 2576 (2007)
  9. Kang SW, Min BH, Suh SS, J. Korean Oil Chem. Soc., 19, 108 (2002)
  10. Zhou K, Ma WW, Zeng Z, Ma XC, Xu X, Guo Y, Li HL, Li LQ, Chem. Eng. J., 372, 1122 (2019)
  11. Jang YH, Lee SM, Yang HJ, Kim SS, Appl. Chem. Eng., 30(5), 633 (2019)
  12. Kumar TP, Rahul M, Chandrajit B, Res. J. Chem. Sci., 1, 83 (2011)
  13. Wang H, Yang W, Tian PH, Zhou J, Tang R, Wu SJ, Appl. Catal. A: Gen., 529, 60 (2017)
  14. Kamal MS, Razzak SA, Hossain MM, Atmos. Environ., 140, 117 (2016)
  15. Mortensen PM, Engbaek JS, Vendelbo SB, Hansen MF, Ostberg M, Ind. Eng. Chem. Res., 56(47), 14006 (2017)
  16. Lu LL, Zhang SM, Xu J, He HJ, Zhao XM, Int. J. Heat Mass Transf., 108, 2021 (2017)
  17. Varsano F, Bellusci M, La Barbera A, Petrecca M, Albino M, Sangregorio C, Int. J. Hydrog. Energy, 44(38), 21037 (2019)
  18. Bordet A, Lacroix L, Fazzini P, Carrey J, Soulantica K, Chaudret B, Angew. Chem.-Int. Edit., 55, 15894 (2016)
  19. Xie Y, Guo Y, Guo Y, Wang L, Zhan W, Wang Y, Gong X, RSC Adv., 6, 50228 (2016)
  20. Solsona B, Garcia T, Aylon E, Dejoz AM, Vazquez I, Agouram S, Davies TE, Taylor SH, Chem. Eng. J., 175, 271 (2011)
  21. Bhanuchandar S, Vinothkumar G, Arunkumar P, Sribalaji M, Keshri AK, Babu KS, J. Alloy. Compd., 780, 256 (2019)