화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.11, 649-656, November, 2021
졸-겔법에 의해 제조한 K0.5Bi0.5TiO3 막과 압전발전기의 특성
Properties of Piezoelectric Generators and K0.5Bi0.5TiO3 Films Prepared by Sol-Gel Method
E-mail:
K0.5Bi0.5TiO3 (KBT) thin films were prepared by sol-gel processing for future use in piezoelectric generators. It is believed that the annealing temperature of films plays an important role in the output performance of piezoelectric generators. KBT films prepared on Ni substrates were annealed at 500 ~ 700 °C. Tetragonal KBT films were formed after annealing process. As the annealing temperature increased, the grain size of KBT films increased. KBT thin films show piezoelectric constant (d33) from 23 to 41 pC/N. The increase of grain size in KBT films brought about output voltage and current in the KBT generators. Also, the increase in the displacement of specimens during bending test resulted in increases in output voltage and current. Although KBT generators showed lower output power than those of generators prepared using NBT films, as reported previously, the KBT films prepared by sol-gel method show applicability as piezoelectric thin films for lead-free nanogenerators, along with NBT films.
  1. Fan FR, Tang W, Wang ZL, Adv. Mater., 28(22), 4283 (2016)
  2. Park KI, Son JH, Hwang GT, Jeong CK, Ryu J, Koo M, Choi I, Lee SH, Byun M, Wang ZL, Lee KJ, Adv. Mater., 26(16), 2514 (2014)
  3. Wang ZL, Song J, Science, 312, 242 (2006)
  4. Xu S, Qin Y, Xu C, Wei YG, Yang RS, Wang ZL, Nat. Nanotechnol., 5(5), 366 (2010)
  5. Momeni K, Odegard GM, Yassar RS, J. Appl. Phys., 108, 114303 (2010)
  6. Le AT, Ahmadipour M, Pung SY, J. Alloy. Compd., 844, 156172 (2020)
  7. Niu X, Jia W, Qian S, Zhu J, Zhang J, Hou X, Mu J, Geng W, Cho J, He J, Chou X, ACS Sustainable Chem. Eng., 7, 979 (2019)
  8. Park KI, Xu S, Liu Y, Hwang GT, Kang SJL, Wang ZL, Lee KJ, Nano Lett., 10, 4939 (2010)
  9. Huo SX, Yuan SL, Tian ZM, Wang CH, Qiu Y, J. Am. Ceram. Soc., 95(4), 1383 (2012)
  10. Park S, Kim Y, Jung H, Park JY, Lee N, Seo Y, Sci. Rep., 7, 17290 (2017)
  11. Alluri NR, Chandrasekhar A, Vivekananthan V, Purusothaman Y, Selvarajan S, Jeong JH, Kim SJ, ACS Sustainable Chem. Eng., 5, 4730 (2017)
  12. Wang XP, Wu JG, Xiao DQ, Zhu JG, Cheng XJ, Zheng T, Zhang BY, Lou XJ, Wang XJ, J. Am. Chem. Soc., 136(7), 2905 (2014)
  13. Wu J, Xiao D, Zhu J, J. Mater. Sci.: Mater. Electron., 26, 9297 (2015)
  14. Zhou D, Zhou Y, Tian Y, Tu Y, Zheng G, Gu H, J. Mater. Sci. Technol., 31, 1181 (2015)
  15. Isupov VA, Ferroelectrics, 315, 123 (2005)
  16. Jumali MHH, Mohammad SM, Awang R, Yahaya M, Salleh MM, Adv. Mater. Res., 364, 412 (2011)
  17. Hou L, Hou YD, Song XM, Zhu MK, Wang H, Yan H, Mater. Res. Bull., 41(7), 1330 (2006)
  18. Hou YD, Hou L, Huang SY, Zhu MK, Wang H, Yan H, Solid State Commun., 137, 658 (2006)
  19. Yaseen M, Chen X, Ren W, Feng Y, Shi P, Wu X, Zhu W, Ceram. Int., 39, S471 (2013)
  20. Sengupta J, Sahoo RK, Bardhan KK, Mukherjee CD, Mater. Lett., 65, 2572 (2011)
  21. Mecurio JP, Marchet P, Integrated Ferroelectrics Int. J., 61, 163 (2004).
  22. Hou YD, Zhu MK, Hou L, Liu JB, Tang JL, Wang H, Yan H, J. Cryst. Growth, 273(3-4), 500 (2005)
  23. Konig J, Suvorov D, J. European Ceram. Soc., 35, 2791 (2015)
  24. Rao PVB, Ramana EV, Sankaram TB, J. Alloy. Compd., 467, 293 (2009)
  25. Sung YS, Kim JM, Cho JH, Song TK, Kim MH, Chong HH, Park TG, Do D, Kim SS, Integrated Ferroelectrics Int. J., 114, 92 (2010)
  26. Cho JA, Kuk MH, Sung YS, Lee SH, Song TK, Jeong SJ, Song JS, Kim MH, Korean J. Mater. Res., 15(10), 639 (2005)
  27. Liu X, Zheng XJ, Liu JY, Zhou KS, J. Electroceramics, 29, 270 (2012)
  28. Huan Y, Wang X, Fang J, Li L, J. European Ceram. Soc., 34, 1445 (2014)
  29. Huo SX, Yuan SL, Tian ZM, Wang CH, Qiu Y, J. Am. Ceram. Soc., 95(4), 1383 (2012)
  30. Bowen CR, Kim HA, Weaver PM, Dunn S, Energy Environ. Sci., 7, 25 (2014)