화학공학소재연구정보센터
Macromolecular Research, Vol.29, No.11, 810-817, November, 2021
Effects of the Degree of Neutralization and Type of Cations on the Water Absorption Behavior of Styrene-co-Methacrylate Ionomers
E-mail:
n this study, the effects of the degree of neutralization and cation type on water absorption of poly(styrene-co-methacrylate) ionomers were investigated. It was found that the water absorption of the ionomer increased as the degree of neutralization increased. It was also observed that for the same ion content, fully neutralized ionomers had less water absorption than partially neutralized ionomers. In the case of ionomers neutralized with various cations, water absorption increased when the type of cation was changed from Li+ to Na+, whereas the water absorption decreased when the type of cation was changed from Na+ to Cs+. Ba2+-neutralized ionomers absorbed less water than K+-neutralized ionomers with a cation size similar to Ba2+. Based on the above findings, it was concluded that the water absorption of ionomers could be understood only by simultaneously considering the number and size of multiplets, the plasticization of multiplets, and the contact surface area occupied by the polymer chains emanating from the multiplets.
  1. Eisenberg A, Kim JS, Introduction to Ionomers, John Wiley & Sons, New York, 1998.
  2. Falk M, Can. J. Chem., 58, 1495 (1980)
  3. Hsu WY, Barley JR, Meakin P, Macromolecules, 13, 198 (1980)
  4. Yeager HL, Steck A, J. Electrochem. Soc., 128, 1880 (1981)
  5. Gierke TD, Munn GE, Wilson FC, J. Polym. Sci. Polym. Phys. Ed., 19, 1687 (1981)
  6. Datye VK, Taylor PL, Hopfinger AJ, Macromolecules, 17, 1704 (1984)
  7. Mauritz KA, Rogers CE, Macromolecules, 18, 483 (1985)
  8. Aldebert P, Dreyfus B, Gebel G, Nakamura N, Pineri M, Volino F, J. Phys. France, 49, 2101 (1988)
  9. Gebel G, Polymer, 41(15), 5829 (2000)
  10. Mauritz KA, Moore RB, Chem. Rev., 104(10), 4535 (2004)
  11. Schmidt-Rohr K, Chen Q, Nat. Mater., 7(1), 75 (2008)
  12. Knox CK, Voth GA, J. Phys. Chem. B, 114(9), 3205 (2010)
  13. Elliott JA, Wu D, Paddison SJ, Moore RB, Soft Matter, 7, 6820 (2011)
  14. Klika V, Kubant J, Pavelka M, Benziger JB, J. Membr. Sci., 540, 35 (2017)
  15. Vishnyakov A, Mao R, Lee MT, Neimark AV, J. Chem. Phys., 148, 024108 (2018)
  16. Yano S, Tadano K, Nagao N, Kutsumizu E, Tachio H, Hirasawa E, Macromolecules, 25, 7168 (1992)
  17. Eisenberg A, Navratil M, Macromolecules, 6, 604 (1973)
  18. Choi JE, Jang JH, Chae JE, Park HY, Lee SY, Jang JH, Kim JY, Henkensmeier D, Yoo SJ, Lee KY, Sung YE, Kim HJ, Macromol. Res., 28(3), 275 (2020)
  19. Chang WH, Liu PY, Lu CJ, Lin DE, Lin MH, Jiang YT, Hsu YHH, Macromol. Res., 28(12), 1064 (2020)
  20. Kim DH, Kang MS, Macrmol. Res., 28, 1268 (2020)
  21. Kim DY, Chang JY, Macromol. Res., 28(13), 1282 (2020)
  22. Park JE, Kim J, Han J, Kim K, Park SB, Kim S, Park HS, Cho YH, Lee JC, Sung YE, J. Membr. Sci., 620, 118871 (2021)
  23. Huang G, Mandal M, Hassan NU, Groenhout K, Dobbs A, Mustain WE, Kohl PA, J. Electrochem. Soc., 168, 024503 (2021)
  24. So IS, Kim JS, Macromol. Res., 28(10), 932 (2020)
  25. Takamatsu T, Eisenberg A, J. Appl. Polym. Sci., 24, 2221 (1979)
  26. Kim JS, Jackman RJ, Eisenberg A, Macromolecules, 27(10), 2789 (1994)
  27. Navratil M, Eisenberg A, Macromolecules, 7, 84 (1974)
  28. Kim JS, Eisenberg A, J. Polym. Sci. B: Polym. Phys., 33(2), 197 (1995)
  29. Williams CE, Russell TP, Jerome R, Horrion J, Macromolecules, 19, 2877 (1986)
  30. Galambos AF, Stockton WB, Koberstein JT, Sen A, Weiss RA, Russell TP, Macromolecules, 20, 3091 (1987)
  31. Ding YS, Hubbard SR, Hodgson KO, Register RA, Cooper SL, Macromolecules, 21, 1698 (1988)
  32. Moore RB, Gauthier M, Williams CE, Eisenberg A, Macromolecules, 25, 5769 (1992)
  33. Li Y, Peiffer DG, Chu B, Macromolecules, 26, 4006 (1993)
  34. Nagayama K, Chan CD, Walls DJ, Londono JD, Iwata T, Polym. Degrad. Stabil., 167, 139 (2019)
  35. Eisenberg A, in Physical Properties of Polymers, American Chemical Society, Washington, DC, 1993.
  36. Jeon HS, Kim JS, Polym. Bull., 49(6), 457 (2003)