- Previous Article
- Next Article
- Table of Contents
Journal of Industrial and Engineering Chemistry, Vol.105, 563-570, January, 2022
Integration of dry-reforming and sorption-enhanced water gas shift reactions for the efficient production of high-purity hydrogen from anthropogenic greenhouse gases
E-mail:,
With growing interest in the bulk production of the alternative energy carrier hydrogen, dry-reforming of methane using carbon dioxide has attracted great interest as one of the possible carbon capture and utilization (CCU) technologies and hydrogen production methods. An integrated system combining the dryreforming and water gas shift reactions is suggested to improve the productivity of hydrogen, and a system has also been developed for high-purity hydrogen production from a single system using the sorption-enhanced reaction concept. To realize the proposed system, we develop the Ru-doped Sr0.92Y0.08TiO3 perovskite catalysts and investigate their characteristics using various analyses. The prepared catalysts exhibit excellent CH4 conversion of 92.2% for the dry-reforming reactions at 800 °C without performance degradation by coke formation. Moreover, high-purity hydrogen (>99.5%) is directly produced by the proposed integrated system using anthropogenic greenhouse gases as reactants, and the efficiency is further enhanced by recycling the captured CO2 to the dry-reforming reactor.
Keywords:Perovskite catalyst;Dry-reforming of methane;Sorption-enhanced water gas shift;Integrated system;High-purity hydrogen
- Jang WJ, Jeong DW, Shim JO, Kim HM, Roh HS, Son IH, Lee SJ, Appl. Energy, 173, 80 (2016)
- Pakhare D, Spivey J, Chem. Soc. Rev., 43(22), 7813 (2014)
- Zubenko D, Singh S, Rosen BA, Appl. Catal. B: Environ., 209, 711 (2017)
- Ay H, Uner D, Appl. Catal. B: Environ., 179, 128 (2015)
- Lee SG, Lim HK, J. Ind. Eng. Chem., 91, 201 (2020)
- Liu DP, Quek XY, Cheo WNE, Lau R, Borgna A, Yang YH, J. Catal., 266(2), 380 (2009)
- Guo JJ, Lou H, Zhao H, Chai DF, Zheng XM, Appl. Catal. A: Gen., 273(1-2), 75 (2004)
- Khani Y, Shariatinia Z, Bahadoran F, Chem. Eng. J., 299, 353 (2016)
- Kathiraser Y, Thitsartarn W, Sutthiumporn K, Kawi S, J. Phys. Chem. C, 117(16), 8120 (2013)
- Kawi S, Kathiraser Y, Ni J, Oemar U, Li Z, Saw ET, ChemSusChem, 8(21), 3556 (2015)
- Li Z, Kathiraser Y, Kawi S, ChemCatChem, 7(1), 160 (2015)
- Bian ZF, Suryawinata IY, Kawi S, Appl. Catal. B: Environ., 195, 1 (2016)
- Wang FG, Han BL, Zhang LJ, Xu LL, Yu H, Shi WD, Appl. Catal. B: Environ., 235, 26 (2018)
- Han K, Xu S, Wang Y, Wang S, Zhao L, Kambonde J, et al., J. Power Sources, 506, 230232 (2021)
- Gao XY, Tan ZW, Hidajat K, Kawi S, Catal. Today, 281, 250 (2017)
- Bahari MB, Setiabudi HD, Nguyen TD, Phuong PTT, Truong QD, Jalil AA, et al., Chem. Eng. Sci., 228, 115967 (2020)
- Shahed GV, Taherian Z, Khataee A, Keshkani F, Orooji Y, J. Ind. Eng. Chem., 86, 73 (2020)
- Han K, Yu W, Xu L, Deng Z, Yu H, Wang F, Fuel, 291, 120182 (2021)
- Han K, Wang Y, Wang S, Liu Q, Deng Z, Wang F, Chem. Eng. J., 421, 12989 (2021)
- Lloyd L, Ridler DE, Twigg MV, in: Catalyst handbook, Wolfe, London, pp.283, 1989.
- Sarshar Z, Kleitz F, Kaliaguine S, Energy Environ. Sci., 4, 4258 (2011)
- Zhu J, Li H, Zhong L, Xiao P, Xu X, Yang X, et al., ACS Catal., 4(9), 2917 (2014)
- Gallego GS, Batiot-Dupeyrat C, Barrault J, Florez E, Mondragon F, Appl. Catal. A: Gen., 334(1-2), 251 (2008)
- Oh JH, Kwon BW, Cho J, Lee CH, Kim MK, Choi SH, Yoon SP, Han J, Nam SW, Kim JY, Jang SS, Lee KB, Ham HC, Ind. Eng. Chem. Res., 58(16), 6385 (2019)
- Kim GS, Lee BY, Ham HC, Han J, Nam SW, Moon J, Yoon SP, Int. J. Hydrog. Energy, 44(1), 202 (2019)
- Lopes FVS, Grande CA, Rodrigues AE, Chem. Eng. Sci., 66(3), 303 (2011)
- Hufton JR, Mayorga S, Sircar S, AIChE J., 45(2), 248 (1999)
- Jang HM, Lee KB, Caram HS, Sircar S, Chem. Eng. Sci., 73, 431 (2012)
- Ortiz AL, Harrison DP, Ind. Eng. Chem. Res., 40(23), 5102 (2001)
- Xiu GH, Li P, Rodrigues AE, Chem. Eng. Sci., 57(18), 3893 (2002)
- Zivkovic LA, Pohar A, Likozar B, Nikacevic NM, Appl. Energy, 178, 844 (2016)
- Zivkovic LA, Pohar A, Likozar B, Mikacevic NM, Chem. Eng. Sci., 211, 115174 (2020)
- Lee JM, Min YJ, Lee KB, Jeon SG, Na JG, Ryu HJ, Langmuir, 26(24), 18788 (2010)
- Lee CH, Lee KB, Appl. Energy, 205, 316 (2017)
- Jia A, Su Z, Lou LL, Liu S, Solid State Sci, 12(7), 1140 (2010)
- Saliba M, Matsui T, Seo JY, Domanski K, Correa-Baena JP, Nazeeruddin MK, et al., Energy Envion. Sci., 9(6), 1989 (2016)
- Gholipour S, Ali AM, Correa-Baena JP, Turren-Cruz SH, Tajabadi F, Tress W, et al., Adv. Mater., 29(38), 170200 (2017)
- Travis W, Glover ENK, Bronstein H, Scanlon DO, Palgrave RG, Chem. Sci., 7(7), 4548 (2016)
- Neagu D, Tsekouras G, Miller DN, Menard H, Irvine JTS, Nat. Chem., 5(11), 916 (2013)
- Wang HQ, Dong XL, Zhao TT, Yu HR, Li M, Appl. Catal. B: Environ., 245, 302 (2019)
- Vovk G, Chen XH, Mims CA, J. Phys. Chem. B, 109(6), 2445 (2005)
- Comes RB, Sushko PV, Heald SM, Colby RJ, Bowden ME, Chambers SA, Chem. Mater., 26(24), 7073 (2014)
- Huang TJ, Lin HJ, Yu TC, Catal. Lett., 105(3-4), 239 (2005)
- Tao S, Irvine JTS, Chem. Mater., 16, 4116 (2004)
- Kwon O, Sengodan S, Kim K, Kim G, Jeong HY, Shin J, Nat. Commun., 8(1) (2017)
- Neagu D, Oh TS, Miller DN, Menard H, Bukhari SM, Gamble SR, et al., Nat. Commun., 6(1) (2015)
- Kwon BW, Oh JH, Kim GS, Yoon SP, Han J, Nam SW, Ham HC, Appl. Energy, 227, 213 (2018)
- Gurav HR, Bobade R, Das VL, Chilukuri S, Indian J. Chem. A, 51, 1339 (2012)
- Yoon H, Zou J, Park S, Sammes NM, Chung JS, Ecs Transactions, 57, 1655 (2013)
- Lee CH, Lee KB, Int. J. Hydrog. Energy, 39(31), 18128 (2014)
- Lee CH, Mun S, Lee KB, J. Power Sources, 281, 158 (2015)