화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.105, 384-392, January, 2022
Photocatalytic oxidation of ceftiofur sodium under UV-visible irradiation using plasmonic porous Ag-TiO2 nanospheres
E-mail:,
In this study, 250 nm sized porous anatase TiO2 nanospheres (TiO2 NSPs) composed of ~ 10 nm sized anatase TiO2 nanoparticles are obtained through a green synthetic route and their surfaces have been decorated with 3.4 nm sized plasmonic silver nanoparticles (AgNPs). Photoluminescence studies confirm that the AgNPs presence on TiO2 NSPs surface effectively inhibits the radiative charge recombination and thus facilitates charge separation process at the Ag-TiO2 NSPs interface, causing an enhanced photocatalytic activity. About 92% of the ceftiofur sodium (CFS) antibiotic taken initially is oxidized by Ag-TiO2 NSPs upon 90 min white light irradiation, while Ag loaded Degussa P25 TiO2 nanoparticles effects only 71% CFS oxidation. The synergistic effect given by plasmonic AgNPs and the continuous framework of anatase TiO2 NPs contributes to inhibit the electron-hole recombination in the Ag-TiO2 NSPs. Oxidation products of CFS in different water sources and their eco-toxicity effects identified through LC-MS and microtoxbioassays, respectively, indicate that the obtained oxidation products are non-toxic compared to pure CFS. Therefore, porous Ag-TiO2 NSPs could be successfully applied in photocatalytic oxidation technologies, exploiting sunlight for the effective removal of pharmaceutical pollutants from wastewater.
  1. Chen X, Mao SS, Chem. Rev., 107(7), 2891 (2007)
  2. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O'Shea K, Entezari MH, Dionysiou DD, Appl. Catal. B: Environ., 125, 331 (2012)
  3. Chen C, Ma W, Zhao J, Chem. Soc. Rev., 39, 4206 (2010)
  4. Ni M, Leung MKH, Leung DYC, Sumathy K, Renew. Sust. Energ. Rev., 11, 401 (2007)
  5. Boominathan M, Pugazhenthiran N, Nagaraj M, Muthusubramanian S, Murugesan S, Bhuvanesh N, ACS Sustainable Chem. Eng., 1, 1405 (2013)
  6. Son HJ, Prasittichai C, Mondloch JE, Luo LL, Wu JS, Kim DW, Farha OK, Hupp JT, J. Am. Chem. Soc., 135(31), 11529 (2013)
  7. Yoon S, Lee ES, Manthiram A, Inorg. Chem., 51(6), 3505 (2012)
  8. Lu B, Zhu C, Zhang Z, Lan W, Xie E, J. Mater. Chem., 22, 1375 (2012)
  9. Taranto R, Frochot D, Pichat P, Ind. Eng. Chem. Res., 46(23), 7611 (2007)
  10. Liu JW, Han R, Wang HT, Zhao Y, Chu Z, Wu HY, Appl. Catal. B: Environ., 103(3-4), 470 (2011)
  11. Dong DB, Li PJ, Li XJ, Zhao Q, Zhang YQ, Jia CY, Li P, J. Hazard. Mater., 174(1-3), 859 (2010)
  12. Zhao T, Liu Z, Nakata K, Nishimoto S, Murakami T, Zhao Y, Jiang L, Fujishima A, J. Mater. Chem., 20, 5095 (2010)
  13. Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
  14. Bae E, Choi W, Environ. Sci. Technol., 37, 147 (2003)
  15. Chiarello GL, Aguirre MH, Selli E, J. Catal., 273(2), 182 (2010)
  16. Zhong LS, Hu JS, Wan LJ, Song WG, Chem. Commun., 1184 (2008).
  17. Ming H, Ma Z, Huang H, Lian S, Li H, He X, Yu H, Pan K, Liu Y, Kang Z, Chem. Commun., 47, 8025 (2011)
  18. Choi H, Antoniou MG, Pelaez M, de la Cruz AA, Shoemaker JA, Dionysiou DD, Environ. Sci. Technol., 41, 7530 (2007)
  19. Wang X, Caruso RA, J. Mater. Chem., 21, 20 (2011)
  20. Srinivasan M, White T, Environ. Sci. Technol., 41, 4405 (2007)
  21. Kumar SG, Devi LG, J. Phys. Chem. A, 115, 13211 (2011)
  22. Zhang F, Zheng Y, Cao Y, Chen C, Zhan Y, Lin X, Zheng Q, Wei K, Zhu J, J. Mater. Chem., 19, 2771 (2009)
  23. Ismail AA, Bahnemann DW, J. Mater. Chem., 21, 11686 (2011)
  24. Andersson M, Birkedal H, Franklin NR, Ostomel T, Boettcher S, Palmqvist AEC, Stucky GD, Chem. Mater., 17, 1409 (2005)
  25. Chen L, Tian L, Zhao X, Hu Z, Fan J, Lv K, Arab. J. Chem., 13, 4404 (2020)
  26. Hu Z, Yang C, Lv K, Li X, Li Q, Fan J, Chem. Commun., 56, 1745 (2020)
  27. Vandarkuzhali SAA, Pugazhenthiran N, Mangalaraja RV, Sathishkumar P, Viswanathan B, Anandan S, ACS Omega, 3, 9834 (2018)
  28. Shah MAAS, Zhang K, Park AR, Kim KS, Park NG, Park JH, Yoo PJ, Nanoscale, 5, 5093 (2013)
  29. Wang S, Qian H, Hu Y, Dai W, Zhong Y, Chen J, Hu X, Dalton Trans., 42, 1122 (2013)
  30. Ribeiro AR, Sures B, Schmidt TC, Environ. Pollut., 241, 1153 (2018)
  31. Bilal M, Ashraf SS, Barcelo D, Iqbal HMN, Sci. Total Environ., 691, 1190 (2019)
  32. Zhang H, Lu S, Ren H, Zhao K, Li Y, Guan Y, Li H, Hu P, Liu Z, RSC Adv., 10, 18407 (2020)
  33. Kumar M, Jaiswal S, Sodhi KK, Shree P, Singh DK, Agrawal PK, Shukla P, Environ. Int., 124, 448 (2019)
  34. Boxall ABA, Kolpin DW, Halling-Sørensen B, Tolls J, Environ. Sci. Technol., 37, 286A (2003)
  35. Tan TTY, Yip CK, Beydoun D, Amal R, Chem. Eng. J., 95(1-3), 179 (2003)
  36. Ishibashi KI, Fujishima A, Watanabe T, Hashimoto K, Electrochem. Commun., 2, 207 (2000)
  37. Hakkila K, Lappalainen J, Virta M, J. Appl. Toxicol., 24, 394 (2004)
  38. Abbas M, Adil M, Ehtisham-ul-Haque S, Munir B, Yameen M, Ghaffar A, Shar GA, Asif Tahir M, Iqbal M, Sci. Total Environ., 626, 1295 (2018)
  39. Microtox, Microbics Manual- A Toxicity Testing Handbook, Microbics Corporation, Carlsbad, CA, USA, 1992.
  40. Jennings VLK, Rayner-Brandes MH, Bird DJ, Water Res., 35, 3448 (2001)
  41. Ramsay JA, Nguyen T, Biotechnol. Lett., 24, 1757 (2002)
  42. Coleman RN, Qureshi AA, Bull. Environ. Contam. Toxicol., 35, 443 (1985)
  43. Xu L, Zhang D, Ming L, Jiao Y, Chen F, Phys. Chem. Chem. Phys., 16, 19358 (2014)
  44. Ferraria AM, Carapeto AP, Botelho do Rego AM, Vacuum, 86, 1988 (2012)
  45. Pan DC, Zhao NN, Wang Q, Jiang SC, Ji XL, An LJ, Adv. Mater., 17(16), 1991 (2005)
  46. Jing LQ, Qu YC, Wang BQ, Li SD, Jiang BJ, Yang LB, Fu W, Fu HG, Sun JZ, Sol. Energy Mater. Sol. Cells, 90(12), 1773 (2006)
  47. Priya R, Baiju KV, Shukla S, Biju S, Reddy MLP, Patil K, Warrier KGK, J. Phys. Chem. C, 113, 6243 (2009)
  48. de Haart LGJ, Blasse G, J. Solid State Chem., 61, 135 (1986)
  49. Anandan S, Kumar PS, Pugazhenthiran N, Madhavan J, Maruthamuthu P, Sol. Energy Mater. Sol. Cells, 92(8), 929 (2008)
  50. Madhavan J, Muthuraaman B, Murugesan S, Anandan S, Maruthamuthu P, Sol. Energy Mater. Sol. Cells, 90(13), 1875 (2006)
  51. Kuriechen SK, Murugesan S, Raj SP, Maruthamuthu P, Chem. Eng. J., 174(2-3), 530 (2011)
  52. Murdoch M, Waterhouse GIN, Nadeem MA, Metson JB, Keane MA, Howe RF, Llorca J, Idriss H, Nat. Chem., 3, 489 (2011)
  53. Zielinska-Jurek A, Kowalska E, Sobczak JW, Lisowski W, Ohtani B, Zaleska A, Appl. Catal. B: Environ., 101(3-4), 504 (2011)
  54. Tanaka A, Sakaguchi S, Hashimoto K, Kominami H, ACS Catal., 3, 79 (2013)
  55. Pugazhenthiran N, Murugesan S, Anandan S, J. Hazard. Mater., 263, 541 (2013)
  56. Nosaka Y, Nosaka A, ACS Energy Lett., 1, 356 (2016)
  57. Bourikas K, Kordulis C, Lycourghiotis A, Chem. Rev., 114(19), 9754 (2014)
  58. Linic S, Christopher P, Ingram DB, Nat. Mater., 10(12), 911 (2011)
  59. Tian Y, Tatsuma T, Chem. Commun., 1810 (2004).
  60. Zhang L, Yang C, Lv K, Lu Y, Li Q, Wu X, Li Y, Li X, Fan J, Li M, Chinese J. Catal., 40, 755 (2019)
  61. Ye Y, Feng Y, Bruning H, Yntema D, Rijnaarts HHM, Appl. Catal. B: Environ., 220, 171 (2018)
  62. Rioja N, Zorita S, Penas FJ, Appl. Catal. B: Environ., 180, 330 (2016)
  63. Koshy KT, Cazers AR, J. Pharm. Sci., 86, 389 (1997)
  64. Becker M, Zittlau E, Petz M, Eur. Food Res. Technol., 217, 449 (2003)