화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.11, 2365-2374, November, 2021
Industrial by-product utilized synthesis of mesoporous aluminum silicate sorbent for thorium removal
E-mail:
Recently, there has been an increasing concern in finding sorbents for radionuclide removal from natural sources. AS-BFS sorbent (aluminum silicate composites derived from blast furnace slag) is a suitable candidate for this purpose; due to economic and environmental reasons. Blast furnace slag (BFS) is a by-product of the iron and steel industry plants. The development of a cost-effective route for recycling and utilization assessment of BFS is an urgent task. AS-BFS was prepared from BFS and its physicochemical properties were determined. The elemental composition of the AS-BFS is mainly oxygen (44%), Si (34%), and Al (19%), with traces of titanium, iron, chloride, and calcium. Experimental potentiality regarding sorption characteristics of AS-BFS to thorium ions was explored via the batch method. AS-BFS showed good adsorption capacity for thorium (obtained after 240 min) from aqueous streams (39.7 mg/g). The sorption process is fitted to the mono-layer adsorption model at optimum conditions. It was also proved that adsorption kinetics follows the pseudo-second-order model. The desorption results revealed that thorium ions (93%) could be eluted using 1M HNO3. Hence, the research work indicates that the thorium sorption method with AS-BFS is cost-effective, efficient, and recommended for thorium removal from natural sources.
  1. Lancmuir D, Herman JS, Geochim. Cosmochim. Acta, 44, 1753 (1980)
  2. Dill HGA, Arab. J. Geosci., 4, 123 (2011)
  3. Vertes A, Nagy S, Klencsar Z, Lovas RG, Rosch F, Handbook of nuclear chemistry, Springer US, New York, (2010).
  4. Abd El-Magied MO, Tolba AA, El-Gendy HS, Zaki SA, Ati AA, Hydrometallurgy, 169, 89 (2017)
  5. Habashi F, Handbook of extractive metallurgy, WILEY-VCH, Weinheim, Germany (1997).
  6. Sadeek SA, Moussa EM, El-Sayed MA, Amine MM, Abd El-Magied MO, J. Dispersion Sci. Technol., 35, 926 (2014)
  7. Agency for Toxic Substances and Disease Registry (ATSDR), Public Health Service (1990).
  8. EPA, U.S. Environmental Protection Agency, Office of Water, EPA822S12001 (2012).
  9. FDA, U.S. Food and Drug Administration, Code of Federal Regulations 21 CFR 165.110 (2017).
  10. Hung NT, Thuan LB, Thanh TC, et al., Hydrometallurgy, 198, 105506 (2020)
  11. Akl ZF, Hegazy MA, J. Environ. Chem. Eng., 8, 104185 (2020)
  12. Yuan D, Zhang S, Tan J, Dai Y, Wang Y, He Y, Liu Y, Zhao X, Sep. Sci. Technol., 237, 116379 (2020)
  13. Yuan D, Zhang S, Xiang Z, He Y, Wang Y, Liu Y, Zhao X, Zhou X, Zhang Q, ACS Appl. Mater. Interfaces, 11, 24512 (2019)
  14. Seader JD, Henley EJ, Separation process principles, John Wiley & Sons, Inc., New York (2006).
  15. Worch E, Adsorption technology in water treatment-fundamentals, processes, and modeling, Berlin (2012).
  16. Broujeni BR, Nilchi A, Azadi F, Environ. Nanotechnol. Monit. Manage., 15, 100400 (2021)
  17. Metaxas M, Kasselouri-Rigopoulou V, Galiatsatou P, Konstantopoulou C, Oikonomou D, J. Hazard. Mater., 97(1-3), 71 (2003)
  18. Dolatyari L, Shateri M, Yaftian MR, Rostamnia S, Sep. Sci. Technol., 54(17), 2863 (2019)
  19. Dousti Z, Dolatyari L, Yaftian MR, Rostamnia S, Sep. Sci. Technol., 54, 2606 (2019)
  20. Dolatyari L, Yaftian MR, Rostamnia S, Sep. Sci. Technol., 53(9), 1282 (2018)
  21. Dolatyari L, Yaftian MR, Rostamnia S, J. Environ. Manage., 169, 8 (2016)
  22. Dolatyari L, Yaftian MR, Rostamnia S, J. Taiwan Inst. Chem. Eng., 60, 174 (2016)
  23. Karmakar R, Singh P, Sen K, Sep. Sci. Technol., 56, 2369 (2021)
  24. Marczenko Z, Balcerzak M, Separation, preconcentration and spectrophotometry in inorganic analysis, Amsterdam (2000).
  25. Coates J, Interpretation of infrared spectra, a practical approach, encyclopedia of analytical chemistry, Chichester (2000).
  26. Ersoy B, Sariisik A, Dikmen S, Sariisik G, Powder Technol., 197(1-2), 129 (2010)
  27. Arrigo I, Catalfamo P, Cavallari L, Di Pasquale S, J. Hazard. Mater., 147(1-2), 513 (2007)
  28. Borges ME, Hernandez L, Ruiz-Morales JC, Martin-Zarza PF, Fierro JLG, Esparza P, Clean Techn. Environ. Policy, 19, 2113 (2017)
  29. Umegaki T, Ogawa R, Toyama N, Ohki S, Tansho M, Shimizu T, Kojima Y, Inorg. Chem. Front., 4, 1568 (2017)
  30. Thommes M, Kaneko K, Neimark A, Olivier J, Rodriguez-Reinoso F, Rouquerol J, Sing K, Pure Appl. Chem., 87, 1051 (2015)
  31. Ansari Z, Singha SS, Saha A, Sen K, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 176, 67 (2017)
  32. Singh P, Maiti PK, Sen K, Bull. Mater. Sci., 43, 56 (2020)
  33. Yokoyama T, Ueda A, Kato K, Mogi K, Matsuo S, J. Colloid Interface Sci., 252(1), 1 (2002)
  34. Treto-Suarez MA, Prieto-Garcia JO, Mollineda-Trujillo A, Lamazares E, Hidalgo-Rosa Y, Mena-Ulecia K, Sci. Rep., 10, 10836 (2020)
  35. Kannan C, Muthuraja K, Devi MR, J. Hazard. Mater., 244-245, 10 (2013)
  36. Chargui F, et al., Boletin de la Sociedad Espanola de Ceramica y Vidrio, 57, 169 (2018).
  37. Ekberg C, Albinsson Y, Comarmond MJ, Brown PL, J. Solution Chem., 29, 63 (2000)
  38. Beardmore J, Lopez X, Mujika JI, Exley C, Sci. Rep., 6, 30913 (2016)
  39. Foo KY, Hameed BH, Chem. Eng. J., 156(1), 2 (2010)
  40. Kaygun AK, Akyil S, J. Hazard. Mater., 147(1-2), 357 (2007)
  41. Hongxia Z, Zheng D, Zuyi T, Colloids Surf. A: Physicochem. Eng. Asp., 278, 46 (2006)
  42. Nilchi A, Dehaghan TS, Garmarodi SR, Desalination, 321, 67 (2013)
  43. Chen CL, Wang XK, Appl. Geochem., 22, 436 (2007)
  44. Abd El-Magied MO, J. Eng., 2016, 1 (2016)
  45. Foo KY, Hameed BH, Chem. Eng. J., 156(1), 2 (2010)
  46. Abu El-Soad AM, Abd El-Magied MO, Atrees MS, Kovaleva EG, Lazzara G, Int. J. Biol. Macromol., 139, 153 (2019)