화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.9, 532-538, September, 2021
합성 불산화 이트륨 분말을 이용한 DLP 3D 프린팅용 광경화성 슬러리 제조
Preparation of Photocurable Slurry for DLP 3D Printing Process using Synthesized Yttrium Oxyfluoride Powder
E-mail:
In this study, a spray dryer is used to make granules of Y2O3 and YF3, and then Y5O4F7 is synthesized following heat treatment of them under Ar gas atmosphere at 600 °C. Single and binary monomer mixtures are compared and analyzed to optimize photocurable monomer system for DLP 3D printing. The mixture of HEA and TMPTA at 8:2 ratio exhibits the highest photocuring properties and low viscosity with shear thinning behavior. The optimized photocurable monomer and synthesized Y5O4F7 are therefore mixed and applied to printing process at variable solid contents (60, 70, 80, & 85 wt.%) and light exposure times. Under optimal light exposure conditions (initial exposure time: 1.2 s, basic exposure time: 5 s), YOF composites at 60, 70 & 80 wt.% solid contents are successfully printed. As a result of measuring the size of the printed samples compared to the dimensions of the designed bar type specimen, the deviation is found to increase as the YOF solid content increases. This shows that it is necessary to maximize the photocuring activity of the monomer system and to optimize the exposure time when printing using a high-solids ceramic slurry.
  1. Kobayashi Y, in Proceedings of the 37th Seminar on High-Temperature Ceramics (Osaka, Japan, 2005). ed. p.17
  2. Cunge G, Pelissier B, Joubert O, Ramos R, Maurice C, Plasma Sourc. Sci. Tech., 14, 599 (2005)
  3. Kim DM, Oh YS, Kim S, Kim HT, Lim DS, Lee SM, Thin Solid Films, 519(20), 6698 (2011)
  4. Shiba Y, Teramoto A, Goto T, Kishi Y, Shirai Y, Sugaha S, J. Vac. Sci. Technol. A, 35, 021405 (2017)
  5. Lin TK, Wang WK, Huang SY, Tasi CT, Wuu DS, Nanomaterials, 7, 183 (2017)
  6. Tahara R, Tsunoura T, Yoshida K, Yano T, Kishi Y, Jpn. J. Appl. Phys., 57, 06JF04 (2018)
  7. Chen Z, Li Z, Li J, Liu C, Lao C, Fu Y, J. European Ceram. Soc., 39, 661 (2019)
  8. Deckers J, Vleugels J, Kruth JP, J. Ceram. Sci. Technol., 05, 245 (2014)
  9. He R, Liu W, Wu Z, An D, Huang M, Wu H, Jiang Q, Ji X, Wu S, Xie Z, Ceram. Int., 44, 3412 (2018)
  10. de Camargo IL, Morais MM, Fortulan CA, Branciforti MC, Ceram. Int., 47, 11906 (2021)
  11. Zheng T, Wang W, Sun J, Liu J, Bai J, Ceram. Int., 46, 8682 (2020)
  12. Krkobabic M, Medarvic D, Cvijc S, Grujic B, Ibric S, Int. J. Pharm., 572, 118790 (2019)
  13. Chen Z, Li J, Liu C, Liu Y, Zhu J, Lao C, Ceram. Int., 45, 11549 (2019)
  14. Zhang K, Xie C, Wang G, Hea R, Ding G, Wang M, Dai D, Fang D, Ceram. Int., 45, 203 (2019)
  15. Bae CJ, Halloran JW, J. European Ceram. Soc., 39, 4299 (2019)
  16. Srivastavab R, Liua J, Hea C, Sun Y, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 88, 25 (2018)
  17. Homola AM, Nguyen HV, J. Chem. Phys., 94, 2346 (1991)
  18. Thakur A, Banthia AK, Maiti BR, J. Appl. Polym. Sci., 58(6), 959 (1995)
  19. Nason C, Roper T, Hoyle C, Pojman JA, Macromolecules, 38(13), 5506 (2005)