화학공학소재연구정보센터
Polymer(Korea), Vol.45, No.5, 757-763, September, 2021
코어쉘 공중합체 첨가제 도입을 통한 에폭시 접착제 물성 향상
Core-Shell Copolymer as Highly Effective Additive for Epoxy Adhesives
E-mail:,
초록
본 연구에서는 코어쉘 구조의 공중합체(CSP)를 합성하여 에폭시 수지의 첨가제로 적용하였고, 나노 구조체에 따른 에폭시 물성 변화를 확인하였다. CSP는 divinylbenzene(DVB) 가교제를 통해 rubbery한 poly(butylacrylate) (PBA) 코어와 에폭시 수지와의 혼용성을 갖는 poly(ethylene glycol)(PEG) 쉘의 형태로 합성하였다. 코어쉘 구조의 물성 향상 효과는 선형 구조의 블록 공중합체(LP)와의 비교를 통해 확인하였으며, 인장 전단 실험과 파단면 관찰, 나노 구조체 확인을 통해 분석하였다. 두 가지 첨가제 모두 잘 분산된 나노 구조체를 형성하여 효과적으로 외부 응력을 분산하는 것으로 나타났다. CSP가 도입된 경우 약 160%, 그리고 LP가 도입된 경우 약 130% 인장 전단 강도가 증가하는 것으로 측정되었다. 이를 통해 CSP 첨가제가 에폭시 물성 향상에 매우 유용함을 확인하였다.
A core-shell structured copolymer (CSP) that consists of a rubbery core and an epoxy-miscible shell was synthesized and used as additives in the epoxy resin. The poly(butylacrylate) (PBA) core functions as a rubbery particle that induces the nanocavitation effect, while the poly(ethylene glycol) (PEG) shell allows uniform dispersion within the epoxy resin due to its miscibility with epoxy. A divinylbenzene (DVB) crosslinker was used to bind the core and to synthesize a stable CSP. The mechanical properties of the additive-modified epoxy resin were investigated by measuring the adhesion strength using a universal testing machine. When using CSP as additives in the epoxy resin, the adhesion strength was increased by 160%, while the linear copolymer (LP) only showed a 130% increase. The morphology of the CSP-modified epoxy and the fracture surface morphologies confirm the role of the nanocavitation effect and the void formation in improving the mechanical properties of the CSP-modified epoxy resins.
  1. Kinloch A, MRS Bull., 28, 445 (2003)
  2. Marques J, Barbosa A, da Silva C, Carbas R, da Silva L, J. Adhes., 97, 172 (2021)
  3. Dillard DA, Advances in Structural Adhesive Bonding. Elsevier: Amsterdam, 2010.
  4. Marouf BT, Mai YW, Bagheri R, Pearson RA, Polym. Rev., 56, 70 (2016)
  5. Bagheri R, Marouf B, Pearson R, Polym. Rev., 49, 201 (2009)
  6. Hsieh TH, Kinloch AJ, Masania K, Lee JS, Taylor AC, Sprenger S, J. Mater. Sci., 45(5), 1193 (2010)
  7. Pruksawan S, Samitsu S, Fujii Y, Torikai N, Naito M, ACS Appl. Polym. Mater., 2, 1234 (2020)
  8. Pang V, Thompson ZJ, Joly GD, Bates FS, Francis LF, ACS Appl. Polym. Mater., 2, 464 (2019)
  9. Dean JM, Verghese NE, Pham HQ, Bates FS, Macromolecules, 36(25), 9267 (2003)
  10. Lipic PM, Bates FS, Hillmyer MA, J. Am. Chem. Soc., 120(35), 8963 (1998)
  11. Liu J, Thompson ZJ, Sue HJ, Bates FS, Hillmyer MA, Dettloff M, Jacob G, Verghese N, Pham H, Macromolecules, 43(17), 7238 (2010)
  12. Wu JX, Thio YS, Bates FS, J. Polym. Sci. B: Polym. Phys., 43(15), 1950 (2005)
  13. Liu JD, Sue HJ, Thompson ZJ, Bates FS, Dettloff M, Jacob G, Verghese N, Pham H, Acta Mater., 57, 2691 (2009)
  14. Hillmyer MA, Lipic PM, Hajduk DA, Almdal K, Bates FS, J. Am. Chem. Soc., 119(11), 2749 (1997)
  15. Grubbs RB, Broz ME, Dean JM, Bates FS, Macromolecules, 33(7), 2308 (2000)
  16. Declet-Perez C, Redline EM, Francis LF, Bates FS, ACS Macro Lett., 1, 338 (2012)
  17. Thio YS, Wu JX, Bates FS, Macromolecules, 39(21), 7187 (2006)
  18. Declet-Perez C, Francis LF, Bates FS, Macromolecules, 48(11), 3672 (2015)
  19. Qian JY, Pearson RA, Dimonie VL, El-Aasser MS, J. Appl. Polym., 58, 439 (1995)
  20. Frohlich J, Kautz H, Thomann R, Frey H, Mulhaupt R, Polymer, 45(7), 2155 (2004)
  21. Sue HJ, et al., Optimization of Mode-I Fracture Toughness of High-Performance Epoxies by Using Designed Core-Shell Rubber Particles 1993.
  22. Kinloch A, Shaw S, Tod D, Hunston D, Polymer, 24, 1341 (1983)
  23. Ning N, Liu W, Hu Q, Zhang L, Jiang Q, Qiu Y, Wei Y, Compos. Sci. Technol., 199, 108364 (2020)
  24. Naguib M, Grassini S, Sangermano M, Macromol. Mater. Eng., 298, 106 (2013)
  25. Becu-Longuet L, Bonnet A, Pichot C, Sautereau H, Maazouz A, J. Appl. Polym., 72, 849 (1999)
  26. Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, Frey H, Chem. Rev., 116(4), 2170 (2016)
  27. Kim S, Yoo M, Baetting J, Kang EH, Koo J, Choe Y, Choi TL, Khan A, Son JG, Bang J, ACS Macro Lett., 4, 133 (2015)
  28. Gao HF, Tsarevsky NV, Matyjaszewski K, Macromolecules, 38(14), 5995 (2005)
  29. Moon J, Huh Y, Park J, Kim HW, Choe Y, Huh J, Bang J, ACS Appl. Polym. Mater., 2, 2444 (2020)
  30. Pang V, Thompson ZJ, Joly GD, Bates FS, Francis LF, ACS Appl. Polym. Mater., 2, 464 (2019)