화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.8, 445-449, August, 2021
Improvement of Thermoelectric Properties in Te-Doped Zintl Phase Magnesium-Antimonide
E-mail:
Zintl compound Mg3Sb2 is a promising candidate for efficient thermoelectric material due to its small band gap energy and characteristic electron-crystal phonon-glass behavior. Furthermore, this compound enables fine tuning of carrier concentration via chemical doping for optimizing thermoelectric performance. In this study, nominal compositions of Mg3.8Sb2-xTex (0 ≤ x ≤ 0.03) are synthesized through controlled melting and subsequent vacuum hot pressing method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are carried out to investigate phase development and surface morphology during the process. It should be noted that 16 at. % of excessive Mg must be added to the system to compensate for the loss of Mg during melting process. Herein, thermoelectric properties such as Seebeck coefficient, electrical conductivity, and thermal conductivity are evaluated from low to high temperature regimes. The results show that Te substitution at Sb sites effectively tunes the majority carriers from holes to electrons, resulting in a transition from p to n-type. At 873 K, a peak ZT value of 0.27 is found for the specimen Mg3.8Sb1.99Te0.01, indicating an improved ZT value over the intrinsic value.
  1. Siddique ARM, Mahmud S, Heyst BV, Renew. Sust. Energ. Rev., 73, 730 (2017)
  2. Franz R, Wiedemann G, Ann. Phys., 165, 497 (1853)
  3. Dow HS, Na M, Kim SJ, Lee JW, J. Mater. Chem. C, 7, 3787 (2019)
  4. Joshi G, Lee H, Lan Y, Wang X, Zhu G, Wang D, et al., Nano Lett., 8, 4670 (2008)
  5. Pei Y, Gibbs ZM, Gloskovskii A, Balke B, Zeier WG, Snyder GJ, Adv. Eng. Mater., 4, 140048 (2014)
  6. Zhao YX, Dyck JS, Hernandez BM, Burda C, J. Am. Chem. Soc., 132(14), 4982 (2010)
  7. Kauzlarich SM, Brown SR, Snyder GJ, Dalton Trans., 21, 2099 (2007)
  8. Cao QG, Zhang H, Tang MB, Chen HH, Yang XX, Grin Y, Zhao JT, J. Appl. Phys., 107, 10 (2010)
  9. Bhardwaj A, Chauhan NS, Goel S, Singh V, Pulikkotil JJ, Senguttuvan TD, Misra DK, Phys. Chem. Chem. Phys., 18, 6191 (2016)
  10. Zhang J, Song L, Borup KA, Jorgensen MRV, Iversen BB, Adv. Eng. Mater., 8, 1 (2018)
  11. Wang Y, Zhang X, Wang Y, Liu H, Zhang J, Phys. Status Solidi A-Appl. Res., 216, 1 (2019)
  12. Zhang F, Chen C, Yao H, Bai F, Yin L, Li X, Li S, Xue W, Wang Y, Cao F, Liu X, Sui J, Zhang Q, Adv. Funct. Mater., 30, 1 (2020)
  13. Song L, Zhang J, Iversen BB, J. Mater. Chem. A, 5, 4932 (2017)
  14. Bhardwaj A, Chauhan NS, Misra DK, J. Mater. Chem. A, 3, 10777 (2015)
  15. Bhardwaj A, Rajput A, Shukla AK, Pulikkotil JJ, et al., RSC Adv., 3, 8504 (2013)
  16. Tamaki H, Sato HK, Kanno T, Adv. Mater., 28(46), 10182 (2016)
  17. Gorai P, Ortiz BR, Toberer ES, Stevanovic V, J. Mater. Chem. A, 6, 13806 (2018)
  18. Rahman MM, Shawon AKMA, Ur SC, Electron. Mater. Lett., 17, 102 (2021)
  19. Shawon AKMA, Rahman MM, Ur SC, Electron. Mater. Lett., 16, 540 (2020)
  20. Zhang J, Song L, Iversen BB, Angew. Chem.-Int. Edit., 132, 4308 (2020)
  21. Dittrich M, Schumacher G, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 604, 27 (2014)
  22. Cui Y, Zhang X, Duan B, Li J, Yang H, Wang H, Wen P, Gao T, Fang Z, Li G, Li Y, Zhai P, J. Mater. Sci.: Mater. Electron., 30, 15206 (2019)
  23. Fujishiro H, Ikebe M, Yagi M, Nakasato K, Shibazaki Y, Fukase T, J. Low Temp. Phys., 105, 981 (1996)