화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.9, 1923-1933, September, 2021
Unified NCNT@rGO bounded porous silicon composite as an anode material for Lithium-ion batteries
E-mail:
Nano/micro silicon particles were achieved by high energy ball milling of silicon mesh powder as a cheap and scalable process and used to make porous silicon by acid etching. Subsequent dispersing of porous silicon with nitrogendoped carbon nanotubes and graphene oxide followed by filtration and heat treatment gives the composite of unified structures of NCNT@rGO protected porous silicon. The obtained composite was studied as an anode material for Li-ion batteries, and it delivered a high reversible capacity of 862/861mAh g-1 at 200 mA g-1 with 91% of capacity retention. Along with superior rate capability, the prepared composite exhibited 578 and 451mAh g-1 discharge capacity at 1,000 and 2,000mA g-1 after a long 300 cycles. The enhanced electrochemical performance of the composite electrode can be accredited to the highly conductive and tough matrix of NCNT@rGO blend structures, and porosity in silicon effectively controls the silicon expansion and accommodates the required buffer volume during lithiation/de-lithiation.
  1. Obrovac MN, Christensen L, Le DB, Dahnb JR, J. Electrochem. Soc., 154(9), A849 (2007)
  2. Baggetto L, Niessen RAH, Notten PHL, Electrochim. Acta, 54(24), 5937 (2009)
  3. Ashuri M, He Q, Shaw LL, Nanoscale, 8, 74 (2016)
  4. Zuo X, Zhu J, Buschbaum PM, Cheng YJ, Nano Energy, 31, 113 (2017)
  5. Sun Y, Liu N, Cui Y, Nat. Energy, 1, 16071 (2016)
  6. Kasavajjula U, Wang CS, Appleby AJ, J. Power Sources, 163(2), 1003 (2007)
  7. Teki R, Datta MK, Krishnan R, Parker TC, Lu TM, Kumta PN, Koratkar N, Small, 5, 2236 (2009)
  8. Wu H, Cui Y, Nano Today, 7, 414 (2012)
  9. Park MH, Kim MG, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J, Nano Lett., 9, 3844 (2009)
  10. Chen Q, Zhu R, Liu S, Wu D, Fu H, Zhu J, He H, J. Mater. Chem. A, 6, 6356 (2018)
  11. Venugopal N, Kim WS, Sohn KY, Korean J. Chem. Eng., 36(9), 1536 (2019)
  12. Gao P, Huang X, Zhao Y, Hu X, Cen D, Gao G, Bao Z, Mei Y, Di Z, Wu G, ACS Nano, 12, 11481 (2018)
  13. Nulu A, Nulu V, Sohn KY, Sci. Adv. Mater., 12, 337 (2020)
  14. Venugopal N, Kim WS, Yu T, Korean J. Chem. Eng., 33(4), 1500 (2016)
  15. Patil R, Phadatare M, Blomquist N, Ortegren J, Hummelgard M, Meshram J, Dubal D, Olin H, ACS Omega, 6, 10 (2021)
  16. Su M, Liu S, Wan H, Dou A, Liu K, Liu Y, Ionics, 25, 2103 (2019)
  17. Nguyen VA, Kuss C, J. Electrochem. Soc, 167, 065501 (2020)
  18. Xu Z, Yang J, Li H, Nuli Y, Wang J, J. Mater. Chem. A, 7, 9432 (2019)
  19. Nulu A, Nulu V, Sohn KY, ChemElectroChem., 7, 4055 (2020)
  20. Ashuri M, He QR, Liu YZ, Zhang K, Emani S, Sawicki MS, Shamie JS, Shaw LL, Electrochim. Acta, 215, 126 (2016)
  21. Yang LY, Li HZ, Liu J, Sun ZQ, Tang SS, Lei M, Sci. Rep., 5, 10908 (2015)
  22. Schulz DL, Hoey J, Smith J, Elangovan A, Wu X, Akhatov I, Payne S, Moore J, Boudjouk P, Pederson L, Xiao J, Zhang JG, Electrochem. Solid State Lett., 13(10), A143 (2010)
  23. Park MH, Kim MG, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J, Nano Lett., 9, 3844 (2009)
  24. Chan CK, Peng H, Liu G, Nat. Nanotechnol., 3, 35 (2008)
  25. Fleischauer MD, Li J, Brett MJ, J. Electrochem. Soc., 156(1), A33 (2009)
  26. Xie J, Tong L, Su LW, Xu YW, Wang LB, Wang YH, J. Power Sources, 342, 529 (2017)
  27. Park Y, Choi NS, Park S, Woo SH, Sim S, Jang BY, Oh SM, Park S, Cho J, Lee KT, Adv. Eng. Mater., 3, 206 (2013)
  28. Yoshio M, Tsumura T, Dimov N, J. Power Sources, 146, 14 (2005)
  29. Jana M, Singh RN, Materialia, 6, 100314 (2019)
  30. Ashuri M, He QR, Liu YZ, Emani S, Shaw LL, Electrochim. Acta, 258, 274 (2017)
  31. Venugopal N, Kim WS, Korean J. Chem. Eng., 32(9), 1918 (2015)
  32. Nulu A, Nulu V, Sohn KY, Korean J. Chem. Eng., 37(10), 1795 (2020)
  33. Wang W, Epur R, Kumta PN, Electrochem. Commun., 13, 429 (2011)
  34. Park KS, Min KM, Seo SD, Lee GH, Shim HW, Kim DW, Mater. Res. Bull., 48(4), 1732 (2013)
  35. Xiao L, Sehlleier YH, Dobrowolny S, Mahlendorf F, Heinzel A, Schulz C, Wiggers H, Mater. Today, 4, S263 (2017)
  36. Gohier A, Laik B, Kim KH, Maurice JL, Ramos JPP, Cojocaru CS, Van PT, Adv. Mater., 24, 19 (2012)
  37. Cui LF, Hu L, Choi JW, Cui Y, ACS Nano, 4, 3671 (2010)
  38. He X, Zhao W, Li D, Cai P, Zhuang Q, Ju Z, New J. Chem., 43, 18220 (2019)
  39. Gao Y, Qiu X, Wang X, Chen X, Gu A, Yu Z, Nanotechnology, 31, 155702 (2020)
  40. Ouyang Y, Zhu XB, Li F, Lai FL, Wu Y, Miao YE, Liu TX, Appl. Surf. Sci., 475, 211 (2019)
  41. Su X, Wu QL, Li JC, Xiao XC, Lott A, Lu WQ, Sheldon BW, Wu J, Adv. Eng. Mater., 4, 130088 (2014)
  42. Epur R, Ramanathan M, Datta MK, Hong DH, Jampani PH, Gattu B, Kumta PN, Nanoscale, 7, 3504 (2015)
  43. Feng XJ, Yang J, Bie YT, Wang JL, Nuli YN, Lu W, Nanoscale, 6, 12532 (2014)
  44. Tarcan R, Boer OT, Petrovai I, Leordean C, Astilean S, Botiz I, J. Mater. Chem. C., 8, 1198 (2020)
  45. Botas C, Carriazo D, Zhang W, Rojo T, Singh G, Appl. Mater. Interfaces, 8, 28800 (2016)
  46. Ren JG, Wang C, Wu QH, Liu X, Yang Y, He L, Zhang W, Nanoscale, 6, 3353 (2014)
  47. Xiao L, Sehlleier YH, Dobrowolny S, Orthner H, Mahlendorf F, Heinzel A, Schulz C, Wiggers H, ChemElectroChem., 2, 1983 (2015)
  48. Cong R, Choi JY, Song JB, Jo M, Lee H, Lee CS, Sci. Rep., 11, 1283 (2021)
  49. Weidenthaler C, Nanoscale, 3, 792 (2011)
  50. Paek SM, Yoo E, Honma I, Nano Lett., 9, 72 (2009)
  51. Fang G, Deng X, Zou J, Zeng X, Int. J. Electrochem. Sci., 14, 1580 (2019)
  52. Fang G, Deng XL, Zou JZ, Zeng XR, Electrochim. Acta, 295, 498 (2019)
  53. Zhang F, Zhu G, Wang K, Qian X, Zhao Y, Luo W, Yang J, J. Mater. Chem. A., 7, 17426 (2019)
  54. Xue L, Xu G, Li Y, Li S, Fu K, Shi Q, Zhang X, ACS Appl. Mater. Interfaces, 5, 21 (2013)
  55. Choi W, Shin HC, Kim JM, Choi JY, Yoon WS, J. Electrochem. Sci. Technol., 11, 1 (2020)
  56. Ding N, Xu J, Yao YX, Wegner G, Fang X, Chen CH, Lieberwirth I, Solid State Ion., 180(2-3), 222 (2009)