화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.101, 293-306, September, 2021
Catalytic hydrocracking, hydrogenation, and isomerization reactions of model biomass tar over (W/Ni)-zeolites
E-mail:
Producing bio-based aromatic substrates is becoming increasingly of (industrial) interest. In this mechanistic work, the gas phase conversion of the biomass tar chemical model compounds (5 wt% naphthalene/95 wt% 1-methylnaphthalene) over the different pristine/metal-modified zeolites in a continuous flow fixed bed reactor was investigated. Bifunctional redox acid process catalysts were synthesized by wet impregnation method. The effect of the W (/Ni) metal formulation additives to the pristine H-beta, H-USY, H-Y, and H-ZSM-5 in the hydrocracking, hydrogenation, and isomerization transformation reactions of the mixture under applied ambient pressure was firstly studied. Structure, texture, morphology, acidity, composition and properties were determined by various analytical techniques. Results showed that the highest catalytic activity with a comparison to others was established over the 20 wt% W-beta with 96.0 mol% of the selectivity to 2-methylnaphthalene, the 93.3 mol% reacted total reactant after the 24 h time on stream, where ethylene/propane were predominating (80.5 wt%), and facile manufacturing scalability. Detailed characterization methodologies have revealed that after the loading of W onto H-beta_support, a uniform functional distribution of particles, the dealumination of framework and strong interaction phenomena were observed, which led to an increase in the amount of Brønsted/Lewis/reduction surface sites, and hence, increase stability of the catalyst. In addition, equilibrium coke formation was detected, decreasing all estimated rates, undergoing also consequent external deactivation, blocking pores, and its burning-off regeneration being needed. While both spent W-modified (20 wt%)/unmodified H-beta/ZSM-5 exhibited the lowest carbon quantity, the same fresh materials possessed the uppermost hierarchy factors.
  1. Zhong J, Perez-Ramirez J, Yan N, Green Chem., 12, 1 (2020)
  2. Tao J, Lu Q, Dong CQ, Du XZ, Adv. Mater. Res., 609, 448 (2012)
  3. Perego C, Bianchi D, Chem. Eng. J., 161(3), 314 (2010)
  4. Esfahani RAM, Osmieri L, Specchia S, Yusup S, Tavasoli A, Zamaniyan A, Chem. Eng. J., 308, 578 (2017)
  5. Shen Y, Fu Y, Sustainable Energy Fuels, 2, 326 (2018)
  6. Liu SY, Mei DH, Wang L, Tu X, Chem. Eng. J., 307, 793 (2017)
  7. Kostyniuk A, Grilc M, Likozar B, Ind. Eng. Chem. Res., 58(19), 7690 (2019)
  8. Abu El-Rub Z, Bramer EA, Brem G, Ind. Eng. Chem. Res., 43(22), 6911 (2004)
  9. Saleem F, Zhang K, Harvey AP, Chem. Eng. J., 360, 714 (2019)
  10. Kostyniuk A, Bajec D, Likozar B, Renew. Energy, 167, 409 (2021)
  11. Mueangta S, Kuchonthara P, Krerkkaiwan S, Energy Fuels, 33(4), 3290 (2019)
  12. Chen T, Ku X, Li T, Karlsson BSA, Sjoblom J, Strom H, Chem. Eng. J. (2020).
  13. Saleem F, Harris J, Zhang K, Harvey A, Chem. Eng. J., 382 (2020)
  14. Lv X, Xiao J, Sun T, Huo X, Song M, Shen L, Korean J. Chem. Eng., 35(2), 394 (2018)
  15. Zhang YL, Luo YH, Wu WG, Zhao SH, Long YF, Energy Fuels, 28(5), 3129 (2014)
  16. Ravenni G, Sarossy Z, Ahrenfeldt J, Henriksen UB, Renew. Sust. Energ. Rev., 94, 1044 (2018)
  17. Park JI, Lee JK, Miyawaki J, Kim YK, Yoon SH, Mochida I, Fuel, 90(1), 182 (2011)
  18. Kim YS, Yun GN, Lee YK, Catal. Commun., 45, 133 (2014)
  19. Wu T, Chen SL, Yuan GM, Pan XJ, Du JN, Zhang YT, Zhang NN, Ind. Eng. Chem. Res., 59(13), 5546 (2020)
  20. Su XP, An P, Gao JW, Wang RC, Zhang YJ, Li X, Zhao YK, Liu YQ, Ma XX, Sun M, Chin. J. Chem. Eng., 28(10), 2566 (2020)
  21. Usman M, Li D, Razzaq R, Yaseen M, Li C, Zhang S, J. Ind. Eng. Chem., 23, 21 (2015)
  22. Michel R, Lamacz A, Krzton A, Djega-Mariadassou G, Burg P, Courson C, Gruber R, Fuel, 109, 653 (2013)
  23. Qian KZ, Kumar A, Fuel, 187, 128 (2017)
  24. Veksha A, Giannis A, Oh WD, Chang VWC, Lisak G, Lim TT, Appl. Catal. A: Gen., 557, 25 (2018)
  25. Wu T, Chen SL, Yuan GM, Xu J, Huang LX, Cao YQ, Fan TT, Fuel, 234, 1015 (2018)
  26. Ferino I, Monaci R, Rombi E, Solinas V, J. Chem. Soc.-Faraday Trans., 94, 2647 (1998)
  27. Sun H, Shi S, Gu Z, Chinese J, Chem. Eng., 25, 149 (2017)
  28. Popova Z, Yankov M, Dimitrov L, Chervenkov I, React. Kinet. Catal. Lett., 52, 51 (1993)
  29. Kostyniuk A, Bajec D, Likozar B, Appl. Catal. A: Gen., 612 (2021)
  30. Guerzoni FN, Abbot J, Appl. Catal. A: Gen., 103, 243 (1993)
  31. Matsuda T, Yogo K, Nagaura T, Kikuchi E, J. Jpn. Pet. Inst., 33, 214 (1990)
  32. Sun H, Sun K, Jiang J, Gu Z, Bull. Chem. React. Eng. Catal., 13, 512 (2018)
  33. Kostyniuk A, Bajec D, Likozar B, J. Ind. Eng. Chem., 96, 130 (2021)
  34. Ishihara A, Itoh T, Nasu H, Hashimoto T, Doi T, Fuel Process. Technol., 116, 222 (2013)
  35. Bouchy M, Dufresne P, Kasztelan S, Ind. Eng. Chem. Res., 31, 2661 (1992)
  36. Patzer JF, Farrauto RJ, Montagna AA, Ind. Eng. Chem. Process Des. Dev., 18, 625 (1979)
  37. Nishijima A, Kameoka T, Sato T, Shimada H, Nishimura Y, Yoshimura Y, Matsubayashi N, Imamura M, Catal. Today, 29(1-4), 179 (1996)
  38. Alsobaai AM, Zakaria R, Hameed BH, Chem. Eng. J., 132(1-3), 77 (2007)
  39. Lee SU, Lee YJ, Kim JR, Jeong SY, J. Ind. Eng. Chem., 66, 279 (2018)
  40. Kostyniuk A, Bajec D, Djinovic P, Likozar B, Chem. Eng. J., 397 (2020)
  41. Kostyniuk A, Bajec D, Djinovic P, Likozar B, Chem. Eng. J., 394 (2020)
  42. Kostyniuk A, Key D, Mdleleni M, J. Energy Inst., 93, 552 (2020)
  43. Freitas EF, Araujo AAL, Paiva MF, Dias SCL, Dias JA, Mol. Catal., 458, 152 (2018)
  44. Kostyniuk A, Bajec D, Likozar B, Green Chem., 22, 753 (2020)
  45. Bajec D, Kostyniuk A, Pohar A, Likozar B, Int. J. Energy Res., 43(13), 6852 (2019)
  46. Kostyniuk A, Key D, Mdleleni M, J. Saudi Chem. Soc., 23, 612 (2019)
  47. Perez-Ramirez J, Verboekend D, Bonilla A, Abello S, Adv. Funct. Mater., 19(24), 3972 (2009)
  48. Hoff TC, Gardner DW, Thilakaratne R, Wang K, Hansen TW, Brown RC, Tessonnier JP, ChemSusChem, 9, 1473 (2016)
  49. Lo BTW, Ye L, Tsang SCE, Chem, 4, 1778 (2018)
  50. Mi X, Hou Z, Li X, Liu H, Guo X, Microporous Mesoporous Mater., 302 (2020)
  51. Ruiz-Martinez J, Beale AM, Deka U, O’Brien MG, Quinn PD, Mosselmans JFW, Weckhuysen BM, Angew. Chem.-Int. Edit., 52, 5983 (2013)
  52. Gambino M, Vesely M, Filez M, Oord R, Ferreira D, Sanchez D, Grolimund N, Nesterenko D, Minoux M, Maquet F, Meirer B, Weckhuysen M, Angew. Chem.-Int. Edit., 132, 3950 (2020)
  53. Ye GH, Sun YY, Guo ZY, Zhu KK, Liu HL, Zhou XG, Coppens MO, J. Catal., 360, 152 (2018)
  54. Lee SU, Lee YJ, Kim JR, Kim ES, Kim TW, Kim HJ, Kim CU, Jeong SY, Mater. Res. Bull., 96, 149 (2017)
  55. Grand J, Talapaneni SN, Vicente A, Fernandez C, Dib E, Aleksandrov HA, et al., Nat. Mater., 16, 1010 (2017)
  56. Wei Q, Zhang P, Liu X, Huang W, Fan X, Yan Y, Zhang R, Wang L, Zhou Y, Front. Chem., 8, 1 (2020)
  57. Yang J, Deng F, Zhang MJ, Luo Q, Ye CH, J. Mol. Catal. A-Chem., 202(1-2), 239 (2003)
  58. Clatworthy EB, Konnov SV, Dubray F, Nesterenko N, Gilson J, Mintova S, Angew. Chem.-Int. Edit., 59, 19414 (2020)
  59. Watmanee S, Suriye K, Praserthdam P, Panpranot J, J. Catal., 376, 150 (2019)
  60. Zhu S, Gao X, Zhu Y, Cui J, Zheng H, Li Y, Appl. Catal. B: Environ., 158-159, 391 (2014)
  61. Hu B, Liu H, Tao K, Xiong C, Zhou S, J. Phys. Chem. C, 117, 26385 (2013)
  62. Barton DG, Soled SL, Meitzner GD, Fuentes GA, Iglesia E, J. Catal., 72, 57 (1999)
  63. Amaya J, Suarez N, Moreno A, Moreno S, Molina R, New J. Chem., 44, 2966 (2020)
  64. Grac MCBI, Top. Catal., 59, 314 (2016)
  65. Guisnet M, Catal. Today, 218-219, 123 (2013)
  66. Montejo-Valencia BD, Salcedo-Perez JL, Curet-Arana MC, J. Phys. Chem. C, 120, 2176 (2016)
  67. Corma A, Gonzalez-Alfaro V, Orchilles AV, J. Catal., 200(1), 34 (2001)
  68. Liu LC, Corma A, Chem. Rev., 118(10), 4981 (2018)
  69. Kantarelis E, Javed R, Stefanidis S, Psarras A, Iliopoulou E, Lappas A, Top. Catal., 62, 773 (2019)
  70. Kim J, Choi M, Ryoo R, J. Catal., 269(1), 219 (2010)