화학공학소재연구정보센터
Macromolecular Research, Vol.29, No.7, 453-461, July, 2021
Fabrication of Stiffness Gradient Nanocomposite Hydrogels for Mimicking Cell Microenvironment
E-mail:
It has attracted much attention to develop a gradient hydrogel for real mimic of the extracellular matrix. Despite simplicity and ease of electrophoresis preparation method, some drawbacks limit the application of the method including toxic organic crosslinker residual, specific ionic monomer types, as well as narro gradient gaps. In this work, we successfully prepared gradiently crosslinked nonionic PNIPAm/Laponite nanocomposite (NC) hydrogels with controllable gradient structures by adjusting the intensity of the direct current electric field. The results showed that the stiffness, surface property and thermosensitivity of the hydrogel changed with gradient distributions of Laponite. The average stiffness gradients varied from 0.18 kPa/mm, 0.41 kPa/mm to 1.28 kPa/mm by simply adjusting the intensity of the direct current electric field from 0.13 V/mm, 0.20 V/mm to 0.27 V/mm accordingly. The stiffness reached in a range of 13.8~33.0 kPa. The growth behaviors of human cervical cancer cells (HeLa cells) on the gradient NC hydrogel surface were discussed. Spreading and proliferation, as well as morphology of HeLa cells were closely related to the stiffness of the gradient NC hydrogels. This work develops a stiffness-controllable gradient NC hydrogel and opens up a new insight into the better understanding of cells behaviors in different tissues and organs in vivo.
  1. Frantz C, Stewart KM, Weaver VM, J. Cell Sci., 123, 4195 (2010)
  2. Arslan E, Guler MO, Tekinay AB, Biomacromolecules, 17(4), 1280 (2016)
  3. Cross LM, Shah K, Palani S, Peak CW, Gaharwar AK, Nanomedicine, 14, 2465 (2018)
  4. Hippler M, Lemma ED, Bertels S, Blasco E, Barner-Kowollik C, Wegener M, Bastmeyer M, Adv. Mater., 31, e18081 (2019)
  5. Ahmed EM, J. Adv. Res., 6, 105 (2015)
  6. Chai Q, Jiao Y, Yu X, Gels, 3, 6 (2017)
  7. Dosh RH, Essa A, Jordan-Mahy N, Sammon C, Le Maitre CL, Acta Biomater., 62, 128 (2017)
  8. Zhao X, Sun X, Yildirimer L, Lang Q, Lin ZYW, Zheng R, Zhang Y, Cui W, Annabi N, Khademhosseini A, Acta Biomater., 49, 66 (2017)
  9. DeLong SA, Moon JJ, West JL, Biomaterials, 26, 3227 (2005)
  10. Lee J, Abdeen AA, Zhang D, Kilian KA, Biomaterials, 34, 8140 (2013)
  11. Xu QH, Zhang Z, Xiao CS, He CL, Chen XS, Biomacromolecules, 18(4), 1411 (2017)
  12. Pathak A, Kumar S, P. Natl. Acad. Sci. U.S.A., 109, 10334 (2012)
  13. Ye K, Wang X, Cao L, Li S, Li Z, Yu L, Ding J, Nano Lett., 15, 4720 (2015)
  14. Lu X, Ding Z, Xu F, Lu Q, Kaplan DL, ACS Appl. Biol. Mater., 2, 3108 (2019)
  15. Xei SA, Zhang T, Wang J, Zhao F, Zhang YP, Yao WJ, Hur SS, et al., Biomaterials, 155, 203 (2018)
  16. Sunyer R, Jin AJ, Nossal R, Sackett DL, PLoS One, 7, e46107 (2012)
  17. Diederich VEG, Studer P, Kern A, Lattuada M, Storti G, Sharma RI, Snedeker JG, Morbidelli M, Biotechnol. Bioeng., 110(5), 1508 (2013)
  18. Kim TH, An DB, Oh SH, Kang MK, Song HH, Lee JH, Biomaterials, 40, 51 (2015)
  19. Oh SH, An DB, Kim TH, Lee JH, Acta Biomater., 35, 23 (2016)
  20. Pedron S, Becka E, Harley BA, Adv. Mater., 27(9), 1567 (2015)
  21. Asoh TA, Akashi M, Chem. Commun., 24, 3548 (2009)
  22. Asoh TA, Matsusaki M, Kaneko T, Akashi M, Adv. Mater., 20(11), 2080 (2008)
  23. Yang Y, Tan Y, Wang X, An W, Xu S, Liao W, Wang Y, ACS Appl. Mater. Interfaces, 10, 7688 (2018)
  24. Yang Y, Tian F, Wang X, Xu P, An W, Hu Y, Xu S, ACS Appl. Mater. Interfaces, 11, 48428 (2019)
  25. Singh P, Kumari A, Chauhan K, Attri C, Seth A, Int. J. Biol. Macromol., 161, 168 (2020)
  26. Tan Y, Wang D, Xu H, Yang Y, An W, Yu L, Xiao Z, Xu S, Macromol. Rapid Commun., 39, e17008 (2018)
  27. Tan Y, Wang D, Xu H, Yang Y, Wang XL, Tian F, Xu P, An W, Zhao X, Xu S, ACS Appl. Mater. Interfaces, 10, 40125 (2018)
  28. Xu P, Tan Y, Wang X, Xu H, Wang D, YAng Y, An W, Xu S, Colloid Polym. Sci., 298, 1187 (2020)
  29. Ordikhani F, Dehghani M, Simchi A, J. Mater. Sci. Mater. Med., 26, 269 (2015)
  30. Liu D, Wang T, Liu X, Tong Z, Biomed. Mater., 7, 055008 (2012)
  31. Lee BH, Vernon B, Polym. Int., 54, 418 (2005)
  32. Jacot JG, McCulloch AD, Omens JH, Biophys. J., 95, 3479 (2008)
  33. Kushida A, Yamato M, Konno C, Kikuchi A, Sakurai Y, Okano T, J. Biomed. Mater. Res., 45, 355 (1999)
  34. Haraguchi K, Takehisa T, Ebato M, Biomacromolecules, 7(11), 3267 (2006)
  35. Shibayama M, Suetoh Y, Nomura S, Macromolecules, 29(21), 6966 (1996)
  36. Haraguchi K, Li HJ, Song LY, J. Colloid Interface Sci., 326(1), 41 (2008)
  37. Happe CL, Tenerelli KP, Gromova AK, Kolb F, Engler AJ, Mol. Biol. Cell, 28, 1950 (2017)
  38. Ho SP, Marshall SJ, Ryder MI, Marshall GW, Biomaterials, 28, 5238 (2007)
  39. Kumar S, Weaver VM, Cancer. Metast. Rev., 28, 113 (2009)
  40. Moeendarbary E, Weber IP, Sheridan GK, Koser DE, Soleman S, Haenzi B, Bradbury EJ, Fawcett J, Franze K, Nat. Commun., 8, 14787 (2017)
  41. Shu Y, Chan HN, Guan D, Wu H, Ma L, Sci. Bull., 62, 222 (2017)
  42. Sun Y, Zhang K, Deng R, Ren X, Wu C, Li J, Chem. Sci., 9, 6516 (2018)