화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.59, No.3, 410-416, August, 2021
건식 스피드 믹서를 이용한 PFO 피치 코팅 천연 흑연의 전기화학적 성능
Electrochemical Performance of PFO Pitch coated Natural Graphite using Dry Speed Mixer
E-mail:
초록
본 연구에서는 천연 흑연의 용량과 안정성을 개선하기 위해 석유계 피치로 코팅된 천연 흑연을 제조하여 전기화학적 성능을 평가하였다. 천연흑연과 피치를 건식 스피드 믹서를 이용해 코팅하였으며, 믹서의 회전 속도, 시간, 흑연과 피치의 조성, 피치의 연화점을 변화시키면서 음극 활물질을 제조하였다. 제조된 음극 활물질의 물리적 특성은 SEM, TEM, PSD를 이용해 분석하였으며, 전기화학적 성능은 사이클, 율속, 임피던스, 순환전압 전류 테스트를 통해 조사하였다. 9000 RPM, 10 wt%, 2 h, 연화점 150 °C조건에서 코팅된 천연 흑연을 0.1 C에서 전기화학적 특성을 테스트 하였을 때, 324.5 mAh/g 의 가장 높은 용량과 50 사이클 이후 98.9%의 용량 유지율을 보였다. 고속 충·방전을 위한 테스트에서는 5 C/0.1 C 용량 유지율은 80.3%로 나타났으며, 코팅되지 않은 천연흑연보다 약 1.7 배로 향상된 용량 유지율을 확인할 수 있었다.
To improve the capacity and stability of natural graphite, the electrochemical performances were investigated by using the prepared natural graphite coated with petroleum pitch for anode materials. The pitch coated natural graphite was prepared using a dry speed mixer by adjusting the rotation speed of the mixer, time, composition of graphite and softening point of the pitch. The physical properties of the anode material were analyzed using SEM, TEM, and PSD. The electrochemical performances were investigated by cycle, C-rate, EIS and CV test. When the pitch coated natural graphite was tested in the condition of 9000 RPM, 10 wt%, 2 h, and softening point of 150 °C, it showed the highest capacity of 324.5 mAh/g at 0.1 C and a capacity retention rate of 98.9% after 50 cycles. In the test for evaluating rate performance, the capacity retention rate (5 C/0.1 C) was 80.3% and was improved by about 1.7 times over the pristine natural graphite.
  1. Liang G, Qin X, Zhou J, Luo L, Wang Y, Wu M, Zhu H, Chen G, Kang F, Li B, Carbon, 127, 424 (2018)
  2. Kawamoto M, He P, Ito Y, Adv. Mater., 29, 160242 (2017)
  3. Park Y, Hong YK, Lee K, J. Ceram. Process. Res., 18(7), 488 (2017)
  4. Lee ML, Li YH, Liao SC, Chen JM, Yeh JW, Shih HC, Electrochim. Acta, 112, 529 (2013)
  5. Peled E, Golodnitsky D, Menachem C, Bar-Tow D, J. Electrochem. Soc., 1445, 3482 (1998)
  6. Park DY, Park DY, Lan Y, Lim YS, Kim MS, Ind. Eng. Chem. Res., 15, 588 (2009)
  7. Jo YJ, Lee JD, Korean Chem. Eng. Res., 57(1), 5 (2019)
  8. Yoon S, Kim H, Oh SM, J. Power Sources, 94(1), 68 (2001)
  9. Wang C, Zhao H, Wang J, Wang J, Lv P, Solid State Ion., 19, 221 (2013)
  10. Wan CY, Li H, Wu MC, Zhao CJ, J. Appl. Electrochem., 39(7), 1081 (2009)
  11. Kim JH, XIao CF, Go K, Lee KJ, Kim HS, Korean Inst. Electr. Electron. Mater. Eng., 32(6), 437 (2019)
  12. Canakci A, Varol T, Cuvalci H, Erdemir F, Ozkaya S, Yalcın ED, Micro Nano Lett., 9(2), 109 (2014)
  13. Lijia C, Haibin C, Rongyong LI, Weifeng HE, Yuhui Y, Materials Science (2021).
  14. Kim KH, Lee SM, An DH, Lee YS, Appl. Chem. Eng., 28(4), 432 (2017)
  15. Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J, ECS J Solid State Sci Technol, 152(3), A607 (2005)
  16. Wan C, Li H, Wu M, Zhao C, J. Appl. Electrochem., 39(7), 1081 (2008)
  17. Kim KS, Kim JH, Hwang JU, Im JS, Lee JD, Korean Chem. Eng. Res., 30(3), 331 (2019)
  18. Park DY, Park DY, Lan Y, Lim YS, Kim MS, J. Ind. Eng. Chem., 15(4), 588 (2009)
  19. Yang Y, Wang Z, Zhou Y, Guo H, Li X, Materials Lett., 199, 84 (2017)
  20. Wang HY, Yoshio M, J. Power Sources, 93(1-2), 123 (2001)