화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.100, 324-332, August, 2021
High-quality gypsum binders based on synthetic calcium sulfate dihydrate produced from industrial waste
E-mail:
Synthetic calcium sulfate dihydrate, obtained from sulfuric acid waste of chemical plants and waste of the fine fraction of limestone, is a potential source of gypsum-containing raw materials. We investigated the processing of synthetic calcium sulfate dihydrate from sulfuric acid waste to gypsum, high-strength gypsum binder, and anhydrite. The effects of technological parameters on the strength indicators of binders were studied. It was found that the obtained samples of binders (based on synthetic gypsum) meet all standards and even exceed the performance of binders obtained from natural gypsum stone. Our studies show that synthetic gypsum is a promising gypsum-containing raw material for the production of gypsum binders and can be a promising alternative to natural gypsum stone.
  1. Romanovski V, Agricultural waste based-nanomaterials: green technology for water purifications, Aquananotechnology, Elsevier, pp.567 2021.
  2. Romanovskaia E, Romanovski V, Kwapinski W, Kurilo I, Hydrometallurgy, 200, 105568 (2021)
  3. Zalyhina V, Cheprasova V, Belyaeva V, Romanovski V, Environ. Sci. Pollut. Res. (2021).
  4. Romanovski V, Environ. Sci. Pollut. Res., 27, 31706 (2020)
  5. Kostic-Pulek A, Marinkovic S, Popov S, Ceramics Silikaty, 40, 99 (1996)
  6. Otitoju TA, Okoye PU, Chen G, Li Y, Okoye MO, Li S, J. Ind. Eng. Chem., 50, 34 (2020)
  7. Satava V, J. Am. Ceram. Soc., 57, 385 (1974)
  8. Lehman H, Mehta S, Tonindindustrie Zeitung, 8, 217 (1973)
  9. Hedberg YS, Wei Z, Moncada F, Contact Dermatitis (2020)
  10. Randolph DA, Negri JL, Devine TR, Gitelis S, Controlled dissolution pellet containing calcium sulfate, U.S. Patent, US5614206 (1997)
  11. Wang P, Lee EJ, Park CS, Yoon BH, Shin DS, Kim HE, Koh YH, Park SH, J. Am. Ceram. Soc., 91, 2039 (2008)
  12. Woo KM, Yu B, Jung HM, Lee YK, J. Biomed. Mater. Res. Part B, 91B, 545 (2009)
  13. Lewry AJ, Williamson J, J. Mater. Sci., 29(20), 5279 (1994)
  14. Gartner EM, Cem. Concr. Res., 39, 289 (2009)
  15. Christensen AN, Olesen M, Cerenius Y, Jensen TR, Chem. Mater., 20, 2124 (2008)
  16. Tang M, Shen X, Huang H, Mater. Sci. Eng. C, 30, 1107 (2010)
  17. Nilles V, Plank J, Cem. Concr. Res., 42, 736 (2012)
  18. Kamarou M, Kuzmenkov M, Korob N, Kwapinski W, Romanovski V, Environ. Technol. Innovat., 17, 100582 (2020)
  19. Beard G, Stucco and decorative plasterwork in Europe New York, (1983).
  20. Combe DC, Smith EC, J. Appl. Chem., 10, 307 (1968)
  21. EN B, 13279-1:2008 Gypsum binders and gypsum plasters, pp.20 Brussels, 2008.
  22. El Hajjouji A, Murat M, Cem. Concr. Res., 17, 814 (1987)
  23. EN B, 13279-2:2014 Gypsum binders and gypsum plasters, Brussels, pp.23 2014.
  24. EN B, 10002-4:1995 Tensile testing of metallic materials, pp.14 1999.
  25. Satava V, Zement - Kalk - Gips., 343, 8 (1967).
  26. Wang YW, Meldrum FC, J. Mater. Chem., 22.41, 22055 (2012)
  27. Flaten EM, Seiersten M, Andreassen JP, J. Cryst. Growth, 311, 3533 (2009)
  28. Ragai J, Ghorab HY, Antar A, Cem. Concr. Res., 17, 12 (1987)
  29. Chikara M, Masayoshi K, Nature, 184, 1481 (1959)
  30. Helt JE, Effects of supersaturation and temperature on nucleation and crystal growth in a MSMPR crystallizer, (1976).
  31. Chernysheva NV, et al., Materials Science and Engineering, 327(March) 032015, 2018.
  32. Daimon M, Rhee KH, Kondo R, J. Ceram. Assoc. Jpn., 78, 277 (1970)
  33. Chang R, Goldsby K, Chemistry, 12, 469 (1988)
  34. McConnell JDC, Astill DM, Hall PL, Mineralog. Mag., 51, 453 (1987)
  35. Li H, Yu T, Zhu L, Wang W, Int. J. Adv. Manuf. Technol., 78, 1943 (2015)
  36. Hunger KJ, Henning O, Cryst. Res. Technol., 23, 1135 (1988)
  37. Ridge MJ, Rev. Pure Appl. Chem., 10, 243 (1960)
  38. Shchukin ED, Amelina EA, Bridging of crystals in process of hydration hardening of gypsum, Rilem Proceedings, 219 (1992).
  39. Chernishov E, Artamonova O, Slavcheva G, Strength Mater. (2020).
  40. Van Driessche AES, Benning LG, Rodriguez-Blanco JD, Ossorio M, Bots P, Garcia-Ruiz JM, Science, 336(6077), 69 (2012)
  41. Khall AA, Trans. J. Brit. Ceram. Soc., 7, 217 (1972)
  42. Balasiu S, Mater. Constr., 20, 98 (1990)
  43. Mosh HP, Baustoffindustrie, 18, 16 (1975)
  44. Jiang GM, Wang H, Chen QS, Zhang XM, Wu ZB, Guan BH, Fuel, 174, 235 (2016)
  45. Singh NB, Middendorf B, Prog. Cryst. Growth Char. Mater., 53, 57 (2007)
  46. Zhou J, Sheng Z, Li T, Shu Z, Chen Y, Wang Y, Ceram. Int., 42, 7237 (2016)
  47. Peters CL, Hines JL, Bachus KN, Craig MA, Bloebaum RD, J. Biomed. Mater. Res., 76A, 456 (2006)
  48. Chukanov NV, Vigasina MF, Vibrational (Infrared and Raman) Spectra Miner. Related Comp., 19 (2020).
  49. Kamarou M, Korob N, Hil A, Moskovskikh D, Romanovski V, J. Chem. Technol. Biotechnol. (2021).
  50. Gathemann B, Henning O, Eggert O, Fischer HB, Haltverbund auf Gipsuntergrunden, Bauhaus Universitat Weimar. Weimar, pp.97 1997.
  51. Pittet C, Lemaitre J, J. Biomed. Mater. Res. Part B, 53, 769 (2000)
  52. Huan Z, Chang J, Acta Biomater., 3, 952 (2007)