화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.99, 292-298, July, 2021
Developed a high-performance sensor based on cumarin derivative for rapid and sensitive detection of palladium ion in organic wastewater
E-mail:,
In this article, a series of coumarin derivative fluorescent probes have been synthesized, which can realize simple, rapid and sensitive detection of Pd2+. We tested the fluorescence properties of three fluorescent probes, (E)-N'-(((4-chloropyridin-2-yl) methylene)-7-(diethylamino)-2-oxo-2H-chromene 3 carbohy (CMDCC) has the better fluorescence properties and anti-interference ability. Then, CMDCC as the fluorescence probe for detection of Pd2+ was systematic studied. Under optimized conditions, this probe has a wide pH range, a lower detection limit (4.45 x 10-8 mol L-1), and a faster response speed (3 min). In the Pd2+ concentration range of 0.1-5 μmol L-1, the fluorescence intensity of this probe and concentration of Pd2+ show a good linear response. In this work, Pd2+ content in organic waste liquid was successfully detected and a standard addition test was also performed. The satisfactory recovery rate was obtained. Moreover, it can be observed with naked eyes that the palladium ion changes the solution color of CMDCC from green to red. This color change can easily be compared with other metal salts. It indicates that CMDCC can also detect Pd2+ by colorimetric method. Therefore, CMDCC should be used to rapidly, conveniently detect Pd2+ in environmental samples.
  1. Lesniewska BA, Godlewska-Zylkiewicz B, Bocca B, Caimi S, Caroli S, Hulanicki A, Sci. Total Environ., 321, 93 (2004)
  2. Bencs L, Ravindra K, Van Grieken R, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 58, 1723 (2003)
  3. Sore HF, Galloway WR, Spring DR, Chem. Soc. Rev., 41, 1845 (2012)
  4. Zhang DJ, Le LY, Qiu RH, Wong WY, Kambe N, Angew. Chem.-Int. Edit., 60, 3104 (2021)
  5. Nicolaou KC, Bulger PG, Sarlah D, Angew. Chem.-Int. Edit., 44, 4442 (2005)
  6. Kempasiddaiah M, Kandathil V, Dateer RB, Baidya M, Patil SA, Patil SA, J. Environ. Sci., 101, 189 (2021)
  7. Jia Z, An X, Deng Y, Pang L, Liu C, Meng L, Xue J, Zhao X, Fan C, Org. Lett., 23, 745 (2021)
  8. Zischka M, Schramel P, Muntau H, Rehnert A, Gomez RE, Stojanik B, Wannemaker G, Dams R, Quevauviller P, Maier EA, Trac.-Trends Anal. Chem., 21, 851 (2002)
  9. Moldovan M, Rauch S, Gomez M, Palacios MA, Morrison GM, Water Res., 35, 4175 (2001)
  10. Ravindra K, Bencs L, Van Grieken R, Sci. Total Environ., 318, 1 (2004)
  11. Wiseman CL, Zereini F, Sci. Total Environ., 407, 2493 (2009)
  12. Spicer CD, Triemer T, Davis BG, J. Am. Chem. Soc., 134(2), 800 (2012)
  13. Yusop RM, Unciti-Broceta A, Johansson EM, Sanchez-Martin RM, Bradley M, Nat. Chem., 3, 239 (2011)
  14. Garrett CE, Prasad K, Adv. Synth. Catal., 346, 889 (2004)
  15. Aulakh JS, Malik AK, Mahajan RK, Talanta, 66, 266 (2005)
  16. Castillo MLA, de Torres AG, Alonso EV, Cordero MTS, Pavon JMC, Talanta, 99, 853 (2012)
  17. Shamsipur M, Ramezani M, Sadeghi M, Microchimica Acta, 166, 235 (2009)
  18. Huang J, Shangguan J, Guo Q, Ma W, Wang H, Jia R, Ye Z, He X, Wang K, Analyst, 144, 4917 (2019)
  19. Zhang D, Hu M, Yuan X, Wu Y, Hu X, Xu S, Liu HW, Zhang X, Liu Y, Tan W, ACS Appl. Mater. Interfaces, 11, 17722 (2019)
  20. Zhu C, Zou Z, Huang C, Zheng J, Liu N, Li J, Yang R, Chem. Commun., 55, 3235 (2019)
  21. Gao LF, Lin X, Zheng AQ, Shuang E, Wang JH, Chen XW, Anal. Chim. Acta, 1111, 132 (2020)
  22. Zhao CX, Zhang XP, Shu Y, Wang JH, ACS Appl. Mater. Interfaces., 12, 22593 (2020)
  23. Shu Y, Zheng N, Zheng AQ, Guo TT, Yu YL, Wang JH, Anal. Chem., 91, 4157 (2019)
  24. Xia J, Zhuang YT, Yu TL, Wang JH, Microchim. Acta, 184, 1109 (2017)
  25. Ma Y, Luo W, Quinn PJ, Liu Z, Hider RC, J. Med. Chem., 47, 6349 (2004)
  26. Takechi H, Oda Y, Nishizono N, Oda K, Machida M, Chem. Pharm. Bull., 48, 1702 (2000)
  27. Areas ES, Bronsato B, Pereira TM, Guedes GP, Miranda FDS, Kummerle AE, da Cruz AGB, Neves AP, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 187, 130 (2017)