화학공학소재연구정보센터
Clean Technology, Vol.27, No.2, 107-114, June, 2021
Mg2NiHx-5 wt% CaO 수소 저장 복합재료의 물질전과정평가
Material Life Cycle Assessment on Mg2NiHx-5 wt% CaO Hydrogen Storage Composites
E-mail:
초록
Mg2NiHx-5 wt% CaO 수소 저장 복합재료의 합성 공정에 대한 환경 영향 특성을 분석하기 위해 물질전과정평가(material life cycle assessment, MLCA)를 수행하였다. MLCA는 Gabi 소프트웨어를 사용하였으며, Eco-Indicator 99’ (EI99)와 CML 2001 방법론을 기반으로 하여 분석하였다. Mg2NiHx-5 wt% CaO 복합재료는 수소 가압형 기계적 합금화법(hydrogen induced mechanical alloying, HIMA)에 의해 합성되었다. X-선 회절분석기(X-ray diffraction, XRD), 주사전자현미경(scanning electron microscopy, SEM), 에너지 분산형 X-선 분광법(energy dispersive X-ray spectroscopy, EDS), 비표면적 분석(Bruner-Emmett-Teller, BET), 열중량 분석(thermogravimetric analysis, TGA)을 이용하여 복합재료의 야금학적, 열화학적 특성을 분석하였다. CML 2001 및 EI99 방법론을 토대로 MLCA를 수행하여 분석한 정규화 결과, Mg2NiHx-5 wt% CaO 복합재료는 지구온난화(GWP)와 화석연료의 환경 부하 값에서 가장 높은 수치를 나타내었다. 이는 CaO 첨가에 따른 제조 공정에서의 추가적인 전기사용으로 인한 것으로 판단된다. 따라서 향후 합금 설계 시에 제조 공정 시간 단축을 통한 공정 최적화 및 친환경적인 대체물질을 탐구하여 환경적인 요인을 고려한 연구를 모색해 볼 필요가 있다.
Material Life Cycle Assessment (MLCA) was performed to analyze the environmental impact characteristics of the Mg2NiHx-5 wt% CaO hydrogen storage composites’ manufacturing process. The MLCA was carried out by Gabi software. It was based on Eco-Indicator 99’ (EI99) and CML 2001 methodology. The Mg2NiHx-5 wt% CaO composites were synthesized by Hydrogen Induced Mechanical Alloying (HIMA). The metallurgical, thermochemical characteristics of the composites were analyzed by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), specific surface area analysis (Bruner-Emmett-Teller, BET), and thermogravimetric analysis (TGA). As a result of the CML 2001 methodology, the environmental impact was 78% for Global Warming Potential (GWP) and 22% for Eutrophication Potential (ETP). In addition, as a result of applying the EI 99’ methodology, the acidification was the highest at 43%, and the ecotoxicity was 31%. Accordingly, the amount of electricity used in the manufacturing process may have an absolute effect on environmental pollution. Also, it is judged that the leading cause of Mg2NiHx-5 wt% CaO is the addition of CaO. Ultimately, it is necessary to research environmental factors by optimizing the process, shortening the manufacturing process time, and exploring eco-friendly alternative materials.
  1. Kim HM, Oh HS, Ryu SH, The Journal of Korean Institute of Educational Facilities, 25(4), 11-18 (2018).
  2. International Energy Agency (IEA), “World Energy Outlook 2020,” Paris (2020).
  3. Hwang IC, Kim KU, Baek JR, Son WI, The Seoul Institute, Report 1-162 (2020).
  4. Grimes CA, Varghese OK, Ranjan S, Light, Water, Hydrogen., Springer, Boston, MA, 35-113 (2008).
  5. Goswami DY, Kreith F, “ENERGY CONVERSION,” CRC Press, 2.1-2.21 (2007).
  6. Lee SG, Lee JH, Park JS, Hydrogen Information, 7, 1 (2005)
  7. Lewis FA, Alsdjem A, “Hydrogen Metal System I,” SCITEC PUB, Zuerich, 37-54 (1996).
  8. Song GS, KEITI, Konetic Report No. 99 (2016).
  9. US Department of Energy, Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles (2014).
  10. Ordaz G, et al., AIChE Spring Metting and Global Congress on Process Safety, Orlando, FL (2006).
  11. Schlapbach L, Andreas Z, Nature, 414, 353 (2001)
  12. Cardella U, Decker L, Sundberg J, Klein H, Int. J. Hydrog. Energy, 42(17), 12339 (2017)
  13. Cardella U, Decker L, Klein H, Int. J. Hydrog. Energy, 42(19), 13329 (2017)
  14. Sadaghiani MS, Mehrpooya M, Ansarinasab H, Int. J. Hydrog. Energy, 42(50), 29797 (2017)
  15. Zuttel A, Materials today, 6(9), 24 (2003)
  16. Kirchheim R, Mutschele T, Kieninger W, Gleiter H, Birringer R, Koble TD, Mater. Sci. Eng., 99(1-2), 457 (1988)
  17. Singh AK, Singh AK, Srivastava ON, J. Alloy. Compd., 227(1), 63 (1995)
  18. Zaluski L, Zaluska A, Strom-Olsen JO, J. Alloy. Compd., 253-254, 70 (1997)
  19. Iwakura C, Nohara S, Zhang SG, Inoue H, J. Alloy. Compd., 285(1-2), 246 (1999)
  20. Reilly JJ, Wiswall RH, Inorg. Chem., 7(11), 2254 (1968)
  21. Lee SH, Jo YM, KIC News, 13(1), 2 (2010)
  22. Lee SS, Lee NR, Kim KI, Hong TW, Clean Technol., 18(1), 69 (2012)
  23. Hong TW, Lim JW, Kim SK, Kim YJ, Park HS, J. Kor. Inst. Met. Mater., 37(3), 369 (1999)
  24. Jung MW, et al., Trans. Korean Hydro. and New Energy Soc., 21(1), 58-63 (2010).
  25. Hong TW, et al., J. of the Korean Hydrogen Energy Society, 10(1), 27-40 (1999).
  26. Huang ZG, Guo ZP, Calka A, Wexler D, Lukey C, Liu HK, J. Alloy. Compd., 422(1-2), 299 (2006)
  27. Samuel FAM, Rao M, Srivastava ON, Progress in Crystal Growth and Characterization of Materials, 7(1-4), 391-450 (1983).
  28. Dvornik M, Mikhailenko E, Adv. Powder Technol., 31(9), 3937 (2020)
  29. Guzzo PL, Santos JB, David RC, Int. J. Miner. Process., 126, 41 (2014)
  30. Zhang JG, Bai Y, Dong H, Wu Q, Ye XC, Adv. Powder Technol., 25(3), 983 (2014)
  31. Jeong SJ, Lee JY, Sohn JS, Hur T, J. Korean Ind. Eng. Chem., 17(2), 163 (2006)
  32. Rashidi AM, Nouralishahi A, Khodadadi AA, Mortazavi Y, Karimi A, Kashefi K, Int. J. Hydrog. Energy, 35(17), 9489 (2010)
  33. Lee NR, Lee SS, Kim KI, Hong TW, Clean Technol., 18(3), 301 (2012)