화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.98, 340-349, June, 2021
CO2 laser machining for microfluidics mold fabrication from PMMA with applications on viscoelastic focusing, electrospun nanofiber production, and droplet generation
E-mail:
In this study, a new method for the fabrication of polydimethylsiloxane (PDMS) microchannels through the replication of plexiglass molds was developed. A plexiglass slab is machined with CO2 laser in the raster mode to produce the mold for the PDMS casting. Then, the PDMS replica of the mold is plasma bonded to a substrate by applying more pressure than standard to overcome the surface roughness inherited from the laser machining process. Depending on the channel complexity, a ready to cast mold in the size of a glass slide can be achieved in 5-20 min, including the design, machining, and cleaning steps. This fully automated and cost-effective mold making method proved to be the fastest among all methods, and it enables up to 2.5 aspect ratio microchannels, down to a width of 60 mm, and a height of 23 mm. The raster mode of the laser provides features lower, in size, then the laser beam waist radius. The produced microchannels were validated using several applications, such as droplet generation, nanofiber production, and viscoelastic microparticle focusing.
  1. Duffy DC, McDonald JC, Schueller OJ, Whitesides GM, Anal. Chem., 70, 4974 (1998)
  2. Stjernstrom M, Roeraade J, J. Micromech. Microeng., 8, 33 (1998)
  3. Klank H, Kutter JP, Geschke O, Lab Chip, 2, 242 (2002)
  4. Liu HB, Gong HQ, J. Micromech. Microeng., 19, 037002 (2009)
  5. Bilican I, Guler MT, Appl. Surf. Sci., 147642 (2020).
  6. Tan A, Rodgers K, Murrihy JP, O’Mathuna C, Glennon JD, Lab Chip, 1, 7 (2001)
  7. Kitamori T, Bull. Chem. Soc. Jpn., 92, 469 (2019)
  8. Chen CY, Wang CM, Liao WS, Bull. Chem. Soc. Jpn., 92, 600 (2019)
  9. Noviana E, McCord CP, Clark KM, Jang I, Henry CS, Lab Chip, 20, 9 (2019)
  10. Hupert ML, Guy WJ, Llopis SD, Shadpour H, Rani S, Nikitopoulos DE, Soper SA, Microfluid. Nanofluidics, 3, 1 (2007)
  11. Zhao DS, Roy B, McCormick MT, Kuhr WG, Brazill SA, Lab Chip, 3, 93 (2003)
  12. Wilson ME, Kota N, Kim Y, Wang Y, Stolz DB, LeDuc PR, Ozdoganlar OB, Lab Chip, 11, 1550 (2011)
  13. Yokokawa R, Tamaoki S, Sakamoto T, Murakami A, Sugiyama S, Biomed. Microdevices, 9, 869 (2007)
  14. Isiksacan Z, Guler MT, Aydogdu B, Bilican I, Elbuken C, J. Micromech. Microeng., 26, 035008 (2016)
  15. Joanni E, Peressinotto J, Domingues PS, de Oliveira Setti G, de Jesus DP, RSC Adv., 5, 25089 (2015)
  16. Novak R, Ranu N, Mathies RA, Lab Chip, 13, 1468 (2013)
  17. Thomas MS, Millare B, Clift JM, Bao D, Hong C, Vullev VI, Ann. Biomed. Eng., 38, 21 (2010)
  18. Lai X, Pu Z, Yu H, Li D, ACS Appl. Mater. Interfaces, 12, 1817 (2020)
  19. Hwang Y, Paydar OH, Candler RN, Sens. Actuators A-Phys., 226, 137 (2015)
  20. Kamei KI, Mashimo Y, Koyama Y, Fockenberg C, Nakashima M, Nakajima M, Li J, Chen Y, Biomed. Microdevices, 17, 1 (2015)
  21. Gerhardt RF, Peretzki AJ, Piendl SK, Belder D, Anal. Chem., 89, 13030 (2017)
  22. Bilican I, Bahadir T, Bilgin K, Guler MT, Talanta, 121293 (2020).
  23. Yoon SG, Koo HJ, Chang ST, ACS Appl. Mater. Interfaces, 7, 27562 (2015)
  24. Yang B, Kong J, Fang X, Talanta, 204, 685 (2019)
  25. Chen X, Li T, Shen J, Int. Polym. Process., 31(2), 233 (2016)
  26. Huang YG, Liu SB, Yang W, Yu CX, Appl. Surf. Sci., 256(6), 1675 (2010)
  27. Nayak NC, Lam Y, Yue C, Sinha AT, J. Micromech. Microeng., 18, 095020 (2008)
  28. Ogonczyk D, Wegrzyn J, Jankowski P, Dabrowski B, Garstecki P, Lab Chip, 10, 1324 (2010)
  29. Guler MT, Microsyst. Technol., 1 (2020).
  30. Li D, Lu X, Xuan X, Anal. Chem., 88, 12303 (2016)
  31. Asghari M, Serhatlioglu M, Ortac B, Solmaz ME, Elbuken C, Scientific Rep., 7, 1 (2017)
  32. Asghari M, Cao X, Mateescu B, Van Leeuwen D, Aslan MK, Stavrakis S, deMello AJ, ACS Nano (2019).
  33. Faridi MA, Ramachandraiah H, Banerjee I, Ardabili S, Zelenin S, Russom A, J. Nanobiotechnol., 15, 3 (2017)
  34. Demierre N, Braschler T, Muller R, Renaud P, Sens. Actuators B-Chem., 132, 388 (2008)
  35. Araz MK, Lee CH, Lal A, Ultrasonic Separation in Microfluidic Capillaries, IEEE, pp.1066 2003.
  36. Guler MT, Bilican I, Agan S, Elbuken C, J. Micromech. Microeng., 25, 095019 (2015)
  37. Lu XY, Liu C, Hu GQ, Xuan XC, J. Colloid Interface Sci., 500, 182 (2017)
  38. Lu X, Xuan X, Anal. Chem., 87, 11523 (2015)
  39. Fan LL, Zhao Z, Tao YY, Wu X, Yan Q, Zhe J, Zhao L, Electrophoresis, 41(10-11), 973 (2020)
  40. Dhanalakshmi M, Jog J, Express Polym. Lett., 2, 540 (2008)
  41. Topuz F, Uyar T, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 80, 371 (2017)
  42. Moutsatsou P, Coopman K, Smith MB, Georgiadou S, Polymer, 77, 143 (2015)
  43. Inal M, Mulazimoglu G, Int. J. Biol. Macromol., 137, 392 (2019)
  44. Hu YY, Zhang J, Fang QC, Jiang DM, Lin CC, Zeng Y, Jiang JS, J. Appl. Polym. Sci., 132 (2015)
  45. Siddiqui MN, Redhwi HH, Tsagkalias I, Softas C, Ioannidou MD, Achilias DS, Thermochim. Acta, 643, 53 (2016)
  46. Pan Y, Ma T, Meng Q, Mao Y, Chu K, Men Y, Pan T, Li B, Chu J, Talanta, 211, 120680 (2020)
  47. An X, Zuo P, Ye BC, Talanta, 209, 120571 (2020)
  48. Yamada M, Doi S, Maenaka H, Yasuda M, Seki M, J. Colloid Interface Sci., 321(2), 401 (2008)
  49. Kalantarifard A, Alizadeh-Haghighi E, Saateh A, Elbuken C, Chem. Eng. Sci., 229, 116093 (2021)
  50. Saateh A, Kalantarifard A, Celik OT, Asghari M, Serhatlioglu M, Elbuken C, Lab Chip, 19, 3815 (2019)