화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.97, 539-548, May, 2021
Catalytic hydrothermal conversion of CO2 captured by ammonia into formate using aluminum-sourced hydrogen at mild reaction conditions
E-mail:
The catalytic conversion of CO2 captured in aqueous media into formate was studied using aluminum- sourced hydrogenin a batch reaction system. To do so, themain ammonia-basedCO2absorption derivatives: ammoniumcarbamate,carbonate and bicarbonateandsodiumbicarbonatewere selectedasCO2source.The performance of the different species was determined under mild hydrothermal reaction conditions (120 °C), using Pd/C 5 wt% catalyst. In these conditions, the formate yield and selectivity increase in the order ammonium bicarbonate < sodium bicarbonate < ammonium carbonate < ammonium carbamate. Ammo-nium bicarbonate and sodium bicarbonate reagents needed higher temperature (250 °C) for an increased yield. Results with ammonium carbamate as starting material indicate a significant effect of time and catalyst content on formate yield, which ranged between 4 and 38%. Experiments with gaseous H2 showed that a comparable yield with Al can be obtained at a similar level of pressure. The reutilization and characterization of the reaction solid, comprising exhausted aluminum and Pd/C catalyst, showed that the aluminum was not completely oxidized up to the 5th re-use, and Pd can play a reducing role through the formation of palladium hydride species. The process can be improved by operating at higher pressure and lower temperature, to avoid loss of yield by dehydration of formate.
  1. Perez-Fortes M, Tzimas E, JRC Science Hub, ZG Petten, the Netherlands, 2016.
  2. Rogelj J, den Elzen M, Hohne N, Fransen T, Fekete H, Winkler H, Chaeffer RS, Ha F, Riahi K, Meinshausen M, Nature, 534(7609), 631 (2016)
  3. Maginn EJ, J. Phys. Chem. Lett., 3478 (2010).
  4. Styring P, Quadrelli EA, Armstrong K, Carbon dioxide utilisation: closing the carbon cycle, first ed., Elsevier, Amsterdam, 2014.
  5. Covert T, Greenstone M, Knittel CR, J. Econ. Perspect., 30, 117 (2016)
  6. Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I, J. Environ. Sci., 20, 14 (2008)
  7. Llamas B, Navarrete B, Vega F, Rodriguez E, Mazadiego LF, Camara A, Otero P, Greenhouse Gases, InTech, Croatia, pp.81 2016.
  8. Gal E, Ultra Cleaning Combustion Gas Including the Removal of CO 2, Patent No, WO2006022885, (2006).
  9. Ahn CK, Lee HW, Lee MW, Chang YS, Han K, Rhee CH, Kim JY, Chun HD, Park JM, Energy Proc., 4, 541 (2011)
  10. Bandyopadhyay A, Carbon Capture and Storage: CO2 Management Technolo-gies, first ed., Apple Academic Press, 2014.
  11. Gray HB, Nat. Chem., 1, 112 (2009)
  12. Song QW, Zhou ZH, He LN, Green Chem., 19, 3707 (2017)
  13. Nakano K, Kobayashi K, Ohkawara T, Imoto H, Nozaki K, Am. J. Chem. Soc., 135, 8456 (2013)
  14. Wu J, Huang Y, Ye W, Li Y, Adv Sci., 4, 170019 (2017)
  15. Bredig G, Carter SR, Ber. Dtsch. Chem. Ges., 47, 541 (1914)
  16. Wang WH, Feng X, Bao M, Transformation of Carbon Dioxide to Formic Acid and Methanol, first ed., Springer, Singapore, 2018.
  17. Klibanov AM, Alberti BN, Zale SE, Biotechnol. Bioeng., 24, 25 (1982)
  18. Stalder CJ, Chao S, Summers DP, Wrighton MS, J. Am. Chem. Soc., 105, 6318 (1983)
  19. Wiener H, Blum J, Feilchenfeld H, Sasson Y, Zalmanov N, J. Catal., 110, 184 (1988)
  20. Uhm S, Chung ST, Lee J, J. Power Sources, 178(1), 34 (2008)
  21. Rice C, Ha RI, Masel RI, Waszczuk P, Wieckowski A, Barnard T, J. Power Sources, 111(1), 83 (2002)
  22. Masters C, Advances in Organometallic Chemistry, New York, pp.61 1979,
  23. Martin A, Navarrete A, Bermejo MD, J. Supercrit. Fluids, 134, 141 (2018)
  24. Wang HZ, Leung DYC, Leung MKH, Ni M, Renew. Sust. Energ. Rev., 13, 845 (2009)
  25. Jin FM, Zeng X, Jing ZZ, Enomoto H, Ind. Eng. Chem. Res., 51(30), 9921 (2012)
  26. Jin F, Gao Y, Jin Y, Zhang Y, Cao J, Wei Z, Smith RL, J. Energy Environ. Sci., 4, 881 (2011)
  27. Kutz M, Environmentally conscious materials and chemicals processing, first ed., Wiley Online Library, 2007.
  28. Steinfeld A, Kuhn P, Reller A, Palumbo R, Murray J, Tamaura Y, Int. J. Hydrog. Energy, 23(9), 767 (1998)
  29. D'Souza L, Mater, Renew. Sustain. Energy, 2, 7 (2013)
  30. Cho YS, Kim JH, Int. J. Hydrog. Energy, 36(14), 8192 (2011)
  31. Turn S, Kinoshita C, Zhang Z, Ishimura D, Zhou J, Int. J. Hydrog. Energy, 23, 64 (1998)
  32. Takahashi H, Liu LH, Yashiro Y, Ioku K, Bignall G, Yamasaki N, Kori T, J. Mater. Sci., 41(5), 1585 (2006)
  33. Zhong H, Wang L, Yang Y, He R, Jing Z, ACS Appl. Mater. Interfaces, 11, 42149 (2019)
  34. He C, Tian G, Liu Z, Feng S, Org. Lett., 12, 649 (2010)
  35. Zhong H, Yao HS, Duo J, Yao GD, Jin FM, Catal. Today, 274, 28 (2016)
  36. Yao GD, Zeng X, Jin YJ, Zhong H, Duo J, Jin FM, Int. J. Hydrog. Energy, 40(41), 14284 (2015)
  37. Jin F, Zeng X, Liu J, Jin Y, Wang L, Zhong H, Yao G, Huo Z, Sci. Rep., 4, 4503 (2014)
  38. Roman-Gonzalez D, Moro A, Burgoa F, Perez E, Nieto-Marquez A, Martin A, Bermejo MD, J. Supercrit. Fluids, 140, 320 (2018)
  39. Anderez-Fernandez M, Perez E, Martin A, Bermejo M, J. Supercrit. Fluids (2017).
  40. Wang T, Ren D, Huo Z, Song Z, Jin F, Chen M, Chen L, Green Chem., 19, 716 (2017)
  41. Zhu Y, Yang Y, Wang X, Zhong H, Jin F, Energy Sci. Eng. (2019).
  42. Su J, Lu M, Lin H, Green Chem., 17, 2769 (2015)
  43. Kim YE, Lim JA, Jeong SK, Yoon YI, Bae ST, Nam SC, Bull. Korean Chem. Soc., 34, 783 (2013)
  44. Pulidindi IN, Kimchi BB, Gedanken A, J. CO2 Util., 7, 19 (2014)
  45. Ahn CK, Lee HW, Chang YS, Han K, Kim JY, Rhee CH, Chun HD, Lee MW, Park JM, Int. J. Greenh. Gas Control
  46. Kauffman GB, J. Chem. Educ., 65, 28 (1988)
  47. Su J, Yang L, Lu M, Lin H, ChemSusChem, 8, 813 (2015)
  48. Shen Z, Zhang Y, Jin F, Green Chem., 13, 820 (2011)
  49. Rajagopal S, Anwer M, Spatola A, Peptides, Birkhauser Boston, pp.11 1994.
  50. Bennett R, Ritchie P, Roxburgh D, Thomson J, Trans. Faraday Soc., 49, 925 (1953)
  51. McCabe RW, J. Catal., 79, 445 (1983)
  52. Mukherjee S, Devaguptapu SV, Sviripa A, Lund CRF, Wu G, Appl. Catal. B: Environ., 226, 162 (2018)
  53. Stockburger D, Stannard J, Rao B, Kobasz W, Tuck C, Proc Symp Hydrogen Storage Mater Batteries Electrochem, New York, pp.431 1992.
  54. Soler L, Macanas J, Munoz M, Casado J, Int. J. Hydrog. Energy, 32(18), 4702 (2007)
  55. Huang XN, Gao T, Pan XL, Wei D, Lv CJ, Qin LS, Huang YX, J. Power Sources, 229, 133 (2013)
  56. Wiebe R, Gaddy V, Heinss C, J. Ind. Eng. Chem., 24, 823 (1932)
  57. Onoki T, Takahashi H, Kori T, Yamasaki N, Hashida T, AIP Conf. Proc., American Institute of Physics, pp.61 2006.
  58. Setiani P, Watanabe N, Sondari RR, Tsuchiya N, Mater. Renew. Sustain. Energy, 7, 10 (2018)
  59. Ravichandran M, Sait AN, Anandakrishnan V, J. Mater. Res., 29, 1480 (2014)
  60. Kwon H, Leparoux M, Nanotechnology, 23, 415701 (2012)
  61. Liu Y, Ma D, Han X, Bao X, Frandsen W, Wang D, Su D, Mater. Lett., 62, 1297 (2008)
  62. Lafficher R, Digne M, Salvatori F, Boualleg M, Colson D, Puel F, Powder Technol., 320, 566 (2017)
  63. Reiche MA, Maciejewski M, Baiker A, Catal. Today, 56(4), 347 (2000)
  64. Huang H, Ye X, Huang H, Zhang L, Leung DY, Chem. Eng. J., 230, 73 (2013)
  65. Nag NK, J. Phys. Chem. B, 105(25), 5945 (2001)
  66. Chan CWA, Xie Y, Cailuo N, Yu KMK, Cookson J, Bishop P, Tsang SC, Chem. Commun., 47, 7971 (2011)
  67. Manchester F, San-Martin A, Pitre J, J. Phase Equilib., 15, 62 (1994)
  68. Chen G, Chou WT, Yeh CT, Appl. Catal., 8, 389 (1983)
  69. Aznarez A, Gil A, Korili S, RSC Adv., 5, 82296 (2015)
  70. Juszczyk W, Karpinski Z, Ratajczykowa I, Stanasiuk Z, Zielinski J, Sheu LL, Sachtler WMH, J. Catal., 120, 68 (1989)
  71. Adams BD, Chen A, Mater. Today, 14, 282 (2011)
  72. Stumpf R, Phys. Rev. Lett., 78, 4454 (1997)
  73. Graetz J, Int. Sch. Res. Notices (2012).