화학공학소재연구정보센터
Renewable Energy, Vol.171, 728-734, 2021
Effects of electrode configurations, solution pH, TiO2 addition on hydrogen production by in-liquid discharge plasma
In-situ hydrogen production for mobile transportation has gradually become a research hotspot with the adjustment of energy structure. Especially hydrogen production from liquid materials can avoid the problems of storage and transportation. In this work, hydrogen produced by in-liquid discharge from ethanol/water mixtures was researched. The effects of electrode configurations, solution pH, commercial TiO2 addition on hydrogen production were specially discussed. The results show that the acid solution is conducive to increasing the percentage concentration of hydrogen, and discharge in the alkaline solution can increase the flow rate of hydrogen at high voltage. Meanwhile, the needle-12 needles configuration is more suitable for in-liquid pulsed discharge for hydrogen production that the energy efficiency is higher compared with other configurations. In-liquid discharge coupled with TiO2 addition can improve the effect of hydrogen production to a certain extent. With 4 mg/L TiO2 concentration, the flow rate and percentage concentration of hydrogen can increase about 30%, 2.6%, respectively. (C) 2021 Elsevier Ltd. All rights reserved.