화학공학소재연구정보센터
Plasma Chemistry and Plasma Processing, Vol.41, No.3, 779-792, 2021
Air Supply Mode Effects on Ozone Production of Surface Dielectric Barrier Discharge in a Cylindrical Configuration
We investigated the air supply mode effects on ozone production of the surface dielectric barrier discharge in the cylindrical configuration. The air into the discharge volume between two coaxial cylinders was supplied through four nozzles axially or tangentially. Using tangential air supply, the vortex flow in the part of the discharge chamber was created. Because the active electrode was in the form of interconnected rings on the outer surface of the glass tube, we changed the airflow orientation concerning this electrode. The existence of vortex airflow affects the plasmachemical processes taking part in the discharge, and therefore, it affects discharge ozone production. We also paid attention to ozone concentration and temperature of output air measurements as a function of the duration of the experiment for both tangential and axial air supply modes. We found that the time required for the stabilization of generated ozone concentration depends on the discharge power, and for our experimental conditions, it smaller than approximately 70 s. Besides, in the case of tangential air supply into the discharge chamber, the concentration of ozone produced by the discharge is for higher discharge power increased in comparison with the concentration for the axial air supply mode.