화학공학소재연구정보센터
Langmuir, Vol.36, No.37, 10960-10969, 2020
Biomass-Derived, Water-Induced Self-Recoverable Composite Aerogels with Robust Superwettability for Water Treatment
Polluted water is a worldwide problem; therefore, effective separation of oil/water and removal of dyes, organic micropollutants, and heavy metals in wastewater are the need of the hour. Herein, hydrophilic beta-cyclodextrin-grafted carboxymethyl cellulose, biodegradable polyvinyl alcohol, and chitosan were used as main raw materials to construct a multifunctional aerogel framework by simple sol-gel and directional freeze-drying methods. Featuring intrinsic superamphiphilic wettability in air, robust superoleophobic wettability underwater, and excellent shape-recovery characteristics, the biomass-derived aerogel presents durable oil/water separation even after 10 cycles. The aerogels possess prominent adsorption capacity for methyl blue, 1-naphthylamine, and Cu2+, which was as high as 121.55 mg/g, 33.96 mg/g, and 122.6 mg/g, respectively. In addition, various pollutant mixtures could be effectively adsorbed by the aerogel at the same time with the adsorption capacity of 121.75 mg/g for methyl blue, 0.97 mg/g for bisphenol A, and 20.11 mg/g for Cu2+.