화학공학소재연구정보센터
Langmuir, Vol.37, No.5, 1674-1681, 2021
Interaction of Bulk Nanobubbles (Ultrafine Bubbles) with a Solid Surface
The experimental results [Kanematsu, W. et al. Chem. Eng. Sci. 2020, 219, 115594] on the temporal variations of number concentrations of bulk nanobubbles (ultrafine bubbles) in contact with polymer materials are theoretically analyzed based on the dynamic equilibrium model of bulk nanobubbles partly covered with hydrophobic materials (impurities). It is suggested that bulk nanobubbles are adsorbed on a polymer surface by attractive hydrophobic interaction between a polymer surface and a hydrophobic material partly covering the bubble surface, overcoming the repulsive double-layer interaction. There are two mysteries. One is that the maximum surface number concentration of bulk nanobubbles of about 70 nm in diameter adsorbed on a hydrophobic polymer surface is more than an order of magnitude lower than the typical value for colloid particles of a similar or larger size. The other is that the experimental adsorption rate of bulk nanobubbles on hydrophobic polymer surface is several orders of magnitude lower than the theoretically estimated one. The mysteries are resolved if many of the bulk nanobubbles adsorbed on a hydrophobic polymer surface change to surface nanobubbles with a footprint diameter of about 1 mu m.