화학공학소재연구정보센터
Journal of the American Ceramic Society, Vol.103, No.8, 4101-4109, 2020
Solid-state sintering of core-shell ceramic powders fabricated by particle atomic layer deposition
The properties of technical ceramics are highly dependent on their microstructure, which evolves during sintering. Sintering is the process by which ceramic parts are subjected to high temperatures to activate chemical diffusion and the consumption of porosity. During the initial stage of sintering, interparticle necks between neighboring particles form and subsequently increase in size, consuming porosity as the particle centers move closer together. To experimentally determine how this process depends on particle surface composition, particle atomic layer deposition (ALD) was used to deposit a thin film of amorphous aluminum oxide (Al2O3) onto yttria-stabilized tetragonal zirconia (3YSZ) particles, producing core-shell structured powders. The uniformity of the Al2O3 film was confirmed with transmission electron microscopy and energy dispersive spectroscopy. Scanning electron microscopy was used to observe microstructural evolution during sintering, and the dihedral angles of Al2O3 and 3YSZ grains were measured to determine the ratio of interfacial energies between the 3YSZ|3YSZ, 3YSZ|Al2O3, and Al2O3|Al2O3 interfaces. Analysis of the densification kinetics revealed that the initial stage of densification is dependent on the material at the surface of the particles (ie, the Al2O3 film) and is controlled by the diffusion of Al3+ cations through Al2O3. Once the Al2O3 film has coalesced, the sintering behavior is controlled by the densification of the core material (3YSZ). Thus, core-shell powders fabricated by particle ALD sinter by a two-step process where the kinetics are dependent on the material present at interparticle contacts.