화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.580, 192-210, 2020
Encryption and authentication of security patterns by ecofriendly multi-color photoluminescent inks containing oxazolidine-functionalized nanoparticles
Counterfeiting of confidential documents has been a costly challenge for banks, companies, and customers. Encryption of invisible security marks, such as barcodes, quick response codes, and logos, in national or international confidential documents by high-security anticounterfeiting inks is the most significant solution for counterfeiting problems. Ecofriendly multi-color photoluminescent anticounterfeiting inks based on highly-fluorescent polymer nanoparticles functionalized with new oxazolidine derivatives were developed for the fast and facile encryption of security labels on cellulosic documents, such as paper currency, passport, and certificate. Depending on the polarity of functionalized polymer nanoparticles, a wide range of colors and fluorescence emissions were observed as a result of polarpolar interactions between the oxazolidine molecules and surface functional groups of the nanoparticles. The fluorescent polymer nanoparticles showed spherical, vesicular, and cauliflower-like morphologies resulted from different surface functional groups. Functional polymer nanoparticles displayed high stability and printability on cellulosic substrates due to hydrogen bonding interactions. The highly-fluorescent polymer nanoparticles were also used to prepare anticounterfeiting inks with different colors and fluorescence emissions. All the ecofriendly polymeric anticounterfeiting inks were loaded to stamps with specific marks, and then applied to different confidential documents. Printed labels displayed highly intense fluorescence emission in different colors (green, orange, pink, and purple depending on the matrix polarity) under UV irradiation (365 nm). These water-based multi-color fluorescent anticounterfeiting inks with highly intense, bright, and sensitive fluorescence emission have potential applications in encryption and authentication of security patterns. (C) 2020 Elsevier Inc. All rights reserved.