화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.584, 770-778, 2021
Ultrasound-assisted synthesis of mixed calcium magnesium oxide (CaMgO2) nanoflakes for photocatalytic degradation of methylene blue
In the present study, mixed calcium magnesium oxide (CaMgO2) nanoflakes were synthesized using an ultrasound-assisted co-precipitation method. The physicochemical, structural and functional properties and elemental composition of the nanoflakes had been characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), High-resolution transmission electron microscopy (HR-TEM), Fourier Transform Infrared spectroscopy (FTIR), UV-VIS spectroscopy, X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Moreover, the photocatalytic actions of the nanoflakes were evaluated by the removal rates of methylene blue (MB) and p-nitrophenol (4-NP) under UV irradiation at room temperature. SEM-EDS studies revealed that the nanoflakes consisted of mixed oxide such as magnesium oxide (MgO) and calcium oxide (CaO) particles. The size of the nanoflakes was found to be in the range of 10-30 nm and the average size was 25 nm as confirmed by HR-TEM analysis. XRD revealed that the standard crystal size was calculated to be 25 nm. The synthesized nanoflakes had a strong photocatalytic activity for methylene blue (MB) and p-nitrophenol (4-NP) degradation in the presence of H2O2 under UV light irradiation within 60 min and 30 min, respectively. Hence, the present study proposes that the CaMgO2 nanoflakes can be employed for the removal of dyes from wastewater. (C) 2020 Elsevier Inc. All rights reserved.