화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.585, 138-147, 2021
One-dimensional zinc-manganate oxide hollow nanostructures with enhanced supercapacitor performance
Hollow electrode materials with structural advantages of large contact interface and sufficient cavity structures are significant for electrochemical energy storage. Herein, ultra-long one-dimensional zinc- manganese oxide (ZnMn2O4) hollow nanofibers were successfully prepared by electrospinning at an appropriate temperature (500 degrees C). The optimal electrode of ZnMn2O4 exhibited a larger specific capacitance (1026 F g(-1)) as compared to ZnMn2O4 powder (125 F g(-1)) at a current density of 2 A g(-1) in three-electrode configuration. Moreover, the optimal electrode of the ZnMn2O4 hollow nanofibers also possessed long-term cycling stability with a slight upward capacitance (100.8%) after 5000 cycles. Their higher specific capacitance and the outstanding cycle stability may be attributed to the unique 1D hollow nanostructure, which enhanced the charge transfer and improved the diffusion of the electrolyte ions at the surface. Thus, this work designed a high-performance electrode with unique hollow nanostructure that can be applied to the field of energy storage. (C) 2020 Elsevier Inc. All rights reserved.