화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.2, 157-162, April, 2021
재활용 PP와 박리 그래핀을 이용한 3D 프린터용 원사의 제조 및 3D 프린터를 이용한 성형
Production of 3D Printer Filament Using Exfoliated Graphene and Recycled PP Composite and Their Application to 3D Printing
E-mail:,
초록
본 연구에서는 1축 extruder를 원사 압출 장비로 사용하여 재활용 폴리프로필렌(rPP)으로 3D 프린터용 원사를 제조하였고, 전기화학적 박리 그래핀을 rPP 대비 10, 20 wt%로 첨가하여 그래핀 복합체 원사를 제조하였다. 전기화학적 박리그래핀은 그 분산도가 우수하여 균일한 rPP/그래핀 복합체 원사 제조를 가능하게 하였다. 그래핀의 함량이 증가할수록 열분해 속도 등 열적 성능이 향상되었다. 기계적 물성 또한 rPP 대비 그래핀 함량이 10 wt%일 때 증가하였는데, 20 wt%에서는 오히려 기계적 물성이 감소하는 것을 볼 수 있었다. 제조한 원사들을 사용하여 상용 3D 프린터를 통해 3D 성형체를 성공적으로 제조할 수 있었으며, 폐플라스틱을 재활용하여 제조하였기 때문에 환경적, 경제적으로 이점을 가질 것으로 기대된다.
In this study, 3D printing filaments using recycled polypropylene (rPP) were produced by a single screw extruder. Graphene composite filament was also prepared using electrochemically exfoliated graphene (EEG) as a composite filler by adding 10, and 20 wt% of EEG to rPP. The graphene and rPP were successfully dispersed with great homogeneity, so that 3D filaments were uniformly produced, and their thermal properties increased as the graphene content increased. The mechanical property was also improved when EEG was 10 wt% but decreased when EEG was 20 wt% compared to that of rPP. 3D structures were successfully manufactured using prepared 3D filaments by a conventional 3D printer, and great advantages can be expected in terms of environmental and economical perspective by adopting plastic waste.
  1. Hager I, Golonka A, Putanowicz R, Procedia Eng., 151, 292 (2016)
  2. Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T, Adv. Sci., 6, 190034 (2019)
  3. Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, Verma N, Gracias DH, McAlpine MC, Nano Lett., 13, 2634 (2013)
  4. Sun J, Zhou W, Huang D, Fuh JYH, Hong GS, Food Bioprocess Technol, 8, 1605 (2015)
  5. Ambrosi A, Pumera M, Chem. Soc. Rev., 45, 2740 (2016)
  6. Wang X, Jiang M, Zhou Z, Gou J, Hui D, Compos. B Eng., 110, 442 (2017)
  7. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D, Compos. B Eng., 143, 172 (2018)
  8. Dizon JRC, Espera AH, Chen Q, Advincula RC, Addit. Manuf., 20, 44 (2018)
  9. Postiglione G, Natale G, Griffini G, Levi M, Turri S, Compos. Pt. A-Appl. Sci. Manuf., 76, 110 (2015)
  10. Jeon H, Kim Y, Yu WR, Lee JU, Compos. B Eng., 189, 107912 (2020)
  11. Nikzad M, Masood SH, Sbarski I, Mater. Des., 32, 3448 (2011)
  12. Hwang S, Reyes EL, Moon KS, Rumpf RC, Kim NS, J. Electron. Mater., 44, 771 (2015)
  13. Fantino E, Chiappone A, Calignano F, Fontana M, Pirri F, Roppolo I, Materials, 9, 589 (2016)
  14. Jakus AE, Secor EB, Rutz AL, Jordan SW, Hersam MC, Shah RN, ACS Nano, 9, 4636 (2015)
  15. Jabari E, Liravi F, Davoodi E, Lin L, Toyserkani E, Addit. Manuf., 35, 101330 (2020)
  16. Song PG, Cao ZH, Cai YZ, Zhao LP, Fang ZP, Fu SY, Polymer, 52(18), 4001 (2011)
  17. Bae JW, Appl. Chem. Eng., 31(1), 25 (2020)
  18. Hertle S, Drexler M, Drummer D, Macromol. Mater. Eng., 301, 1482 (2016)
  19. Lei L, Yao Z, Zhou J, Wei B, Fan H, Compos. Sci. Technol., 200, 108479 (2020)
  20. Dong M, Zhang S, Gao Chou B, AIP Conf. Proc., 2065, 030059 (2019)
  21. Carneiro OS, Silva AF, Gomes R, Mater. Des., 83, 768 (2015)
  22. Zhong YL, Tian Z, Simon GP, Li D, Mater. Today, 18(2), 73 (2014)
  23. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R, Phys. Chem. Chem. Phys., 9, 1726 (2007)
  24. Guo H, Lv R, Bai S, Nano Mater. Sci., 1, 101 (2019)
  25. Wei X, Li D, Jiang W, Gu Z, Wang X, Zhang Z, Sun Z, Sci. Rep., 5, 11181 (2015)
  26. Sayyar S, Bjorninen M, Haimi S, Miettinen S, Gilmore K, Grijpma D, Wallace G, ACS Appl. Mater. Interfaces, 9, 31916 (2016)
  27. Hoor FA, Morshedian J, Ahmadi S, Rakhshanfar M, Bahramzadeh A, J. Chem., 1, 1 (2015)
  28. Waheed S, Cabot JM, Smejkal P, Farajikhah S, Sayyar S, et al., ACS Appl. Mater. Interfaces, 11, 4353 (2019)
  29. Zan GT, Wu QS, Adv. Mater., 28(11), 2099 (2016)