화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.2, 125-131, April, 2021
근적외선 업컨버전 나노입자를 이용한 광촉매 성능 향상
Improvement of Photocatalytic Performance using Near-Infrared Upconversion Nanoparticles
E-mail:
초록
일반적인 반도체 기반의 광촉매는 물질 고유의 밴드갭 때문에 자외선이나 가시광선에 의해서만 활성화될 수 있고, 태양광 에너지의 약 50%를 차지하는 근적외선 영역의 에너지는 활용할 수 없다. 따라서 기존의 반도체 광촉매의 성능을 향상시키기 위해서는 자외선에서 근적외선에 이르는 넓은 영역에서 더 많은 태양광 에너지를 활용할 수 있어야한다. 태양광의 근적외선 영역을 활용하기 위해 기존 반도체 광촉매를 업컨버전 나노입자와 결합하는 연구들이 수행되고 있다. 업컨버전 나노입자는 근적외선 광자를 여러 개 흡수하여 자외선이나 가시광선으로 변환하여 광촉매를 활성화할 수 있다. 그리고 반도체 광촉매와 업컨버전 나노입자에 플라즈모닉 금속 나노입자를 함께 결합시키면 태양광에 의한 광촉매 활성을 더욱 향상시킬 수 있다. 본 총설은 업컨버전 나노입자를 이용하여 근적외선 영역의 태양광 에너지가 광촉매의 성능 향상에 기여할 수 있도록 하는 최근의 연구결과를 바탕으로 서술하였다.
Semiconductor-based photocatalysts can only be activated with ultraviolet or visible light due to their intrinsic bandgap, and they cannot use the energy in the near-infrared region, which accounts for about 50% of solar energy. Therefore, in order to improve the performance of the semiconductor photocatalyst, it is necessary to utilize more solar energy in a broad band ranging from ultraviolet to near-infrared. Combining upconversion nanoparticles with semiconductor photocatalysts for near-infrared absorption have thus been reported. Upconversion nanoparticles can sequentially absorb multiple near-infrared photons and convert them into ultraviolet or visible to activate photocatalysts. In addition, by coupling the semiconductor photocatalyst and the upconversion nanoparticles with the plasmonic metal nanoparticles, the photocatalytic activity can be further improved. This review summarizes the recent studies on improving the photocatalytic performance with near-infrared absorption by using upconversion nanoparticles.
  1. Ola O, Maroto-Valer MM, J. Photochem. Photobiol. C-Photochem. Rev., 24, 16 (2015).
  2. Liu J, Ma NK, Wu W, He QG, Chem. Eng. J., 393, 124719 (2020)
  3. Gamelin DR, Gudel HU, Accounts Chem. Res., 33, 235 (2000)
  4. Kim D, Lee N, Park YI, Hyeon T, Bioconjugate Chem., 28, 115 (2017)
  5. Kim D, Kim J, Park YI, Lee N, Hyeon T, ACS Central Sci., 4, 324 (2018)
  6. Li H, Wang X, Ohulchanskyy TY, Chen GY, Adv. Mater., 33, 202000 (2020)
  7. Wang F, Liu XG, Chem. Soc. Rev., 38, 976 (2009)
  8. Huang SQ, Gu L, Miao C, Lou ZY, Zhu NW, Yuan HP, Shan AD, J. Mater. Chem. A, 1, 7874 (2013)
  9. Balaji R, Kumar S, Reddy KL, Sharma V, Bhattacharyya K, Krishnan V, J. Alloy. Compd., 724, 481 (2017)
  10. Zhang QZ, Deng JJ, Xu ZH, Chaker M, Ma DL, ACS Catal., 7, 6225 (2017)
  11. Zhang JM, Huang Y, Jin X, Nazartchouk A, Liu MS, et al., Nanoscale Horiz., 4, 907 (2019)
  12. Haase M, Schafer H, Angew. Chem.-Int. Edit., 50, 5808 (2011)
  13. Wang F, Liu XG, Accounts Chem. Res., 47, 1378 (2014)
  14. Heer S, Kompe K, Gudel HU, Haase M, Adv. Mater., 16(23-24), 2102 (2004)
  15. Wang YF, Liu GY, Sun LD, Xiao JW, Zhao JW, Zhou JC, Yan CH, ACS Nano, 7, 7200 (2013)
  16. Ke J, Lu S, Shang X, Liu Y, Guo H, You W, Li X, Xu J, Li R, Chen Z, Chen X, Adv. Sci., 6, 190187 (2019)
  17. Xie XJ, Liu XG, Nat. Mater., 11(10), 842 (2012)
  18. Song D, Chi SY, Li X, Wang CX, Li Z, Liu Z, ACS Appl. Mater. Interfaces, 11, 41100 (2019)
  19. Zou WQ, Visser C, Maduro JA, Pshenichnikov MS, Hummelen JC, Nat. Photonics, 6, 560 (2012)
  20. Wang F, Deng RR, Wang J, Wang QX, Han Y, Zhu HM, Chen XY, Liu XG, Nat. Mater., 10(12), 968 (2011)
  21. Su QQ, Han SY, Xie XJ, Zhu HM, Chen HY, Chen CK, Liu RS, Chen XY, Wang F, Liu XG, J. Am. Chem. Soc., 134(51), 20849 (2012)
  22. Su WK, Zheng MM, Li L, Wang K, Qiao R, Zhong YJ, Hu Y, Li ZQ, J. Mater. Chem. A, 2, 13486 (2014)
  23. Zhang YW, Hong ZL, Nanoscale, 5, 8930 (2013)
  24. Cheng EJ, Yin WJ, Bai S, Qiao R, Zhong YJ, Li ZQ, Mater. Lett., 146, 87 (2015)
  25. Yao C, Wang WX, Wang PY, Zhao MY, Li XM, Zhang F, Adv. Mater., 30, 170483 (2018)
  26. Wu ZB, Yuan XZ, Zeng GM, Jiang LB, Zhong H, Xie YC, Wang H, Chen XH, Wang H, Appl. Catal. B: Environ., 225, 8 (2018)
  27. Lee SY, Lee G, Jun YS, Park YI, Appl. Surf. Sci., 508, 144839 (2020)
  28. Cheng E, Zhou S, Li M, Li ZQ, Appl. Surf. Sci., 410, 383 (2017)
  29. Guo XY, Di WH, Chen CF, Liu CX, Wang X, Qin WP, Dalton Trans., 43, 1048 (2014)
  30. Tian QY, Yao WJ, Wu ZH, Liu J, Liu L, Wu W, Jiang C, J. Mater. Chem. A, 5, 23566 (2017)
  31. Zhang YY, Wang LL, Park SH, Kong XY, Lan XF, Song ZY, Shi JS, Chem. Eng. J., 375, 121967 (2019)
  32. Deng YC, Tang L, Feng CY, Zeng GM, Wang JJ, Lu Y, Liu YN, Yu JF, Chen S, Zhou YY, ACS Appl. Mater. Interfaces, 9, 42816 (2017)
  33. Gao Y, Shi C, Feng JZ, Zhao GY, Yu H, Bi YF, Ding F, Sun YG, Xu ZH, RSC Adv., 7, 54555 (2017)
  34. Kumar A, Reddy KL, Kumar S, Kumar A, Sharma V, Krishnan V, ACS Appl. Mater. Interfaces, 10, 15565 (2018)
  35. Xu ZH, Quintanilla M, Vetrone F, Govorov AO, Chaker M, Ma DL, Adv. Funct. Mater., 25(20), 2950 (2015)