화학공학소재연구정보센터
Clean Technology, Vol.27, No.1, 47-54, March, 2021
입상 활성탄에 대한 Acid Fuchsin의 흡착특성과 열역학 파라미터
Adsorption Characteristics and Thermodynamic Parameters of Acid Fuchsin on Granular Activated Carbon
E-mail:
초록
입상 활성탄(GAC)에 대한 Acid Fuchsin (AF)의 흡착을 염료의 초기농도, 접촉 시간, 온도 및 pH 를 흡착변수로 실험하여 등 온흡착과 동력학적, 열역학적 파라미터에 대해 조사하였다. pH 변화실험에서 활성탄에 대한 AF의 흡착은 pH 3과 11에서 모두 흡착이 증가하는 욕조형을 나타냈다. AF의 흡착평형자료는 Freundlich 등온식에 잘 맞았으며, 계산된 분리계수(1/n) 값으로부터 활성탄이 AF를 효과적으로 제거할 수 있다는 것을 알았다. 흡착공정은 유사 이차 반응속도식이 오차율 7.88% 이내로 잘 맞았다. Weber와 Morris 모델의 Polt에 따르면 두 단계의 직선으로 구분되었다. stage 2 (입자내 확산)의 기울기가 stage 1(경계층 확산)의 기울기 보다 작아서 입자내 확산속도가 느렸다. 따라서 입자 내 확산이 속도지배단계인 것을 확인하였다. AF의 활성화 에너지(13.00 kJ mol-1)는 물리흡착공정(5 ~ 40 kJ mol-1)에 해당하였다. 활성탄에 의한 AF 흡착의 자유에너지 변화는 298 ~ 318 K에서 모두 음의 수치를 나타냈으며, 온도가 증가할수록 자발성이 더 높아졌다. AF 흡착은 흡열반응(△H =22.65 kJ mol-1)으로 나타났다.
The adsorption of Acid Fuchsin (AF) on granular activated carbon (GAC) was investigated for isothermal adsorption and kinetics and thermodynamic parameters by experimenting with the initial concentration, contact time, temperature, and pH of the dye as adsorption parameters. In the pH effect experiment, the adsorption of AF on activated carbon showed a bathtub type with increased adsorption at pH 3 and 11. The adsorption equilibrium data of AF fit well with the Freundlich isotherm model, and the calculated separation factor (1/n) value was found in which activated carbon can effectively remove AF. The pseudo-second-order kinetic model fits well within 7.88% of the error percent in the adsorption process. According to Weber and Morris’s model plot, it was divided into two straight lines. The intraparticle diffusion rate was slow because the stage 2 (intraparticle diffusion) slope was smaller than that of stage 1 (boundary layer diffusion). Therefore, it was confirmed that the intraparticle diffusion was a rate-controlling step. The activation energy of AF (13.00 kJ mol-1) corresponded to the physical adsorption process (5 - 40 kJ mol-1). The free energy change of the AF adsorption by activated carbon showed negative values at 298-318 K. As the spontaneity increased with increasing temperature. The adsorption of AF was an endothermic reaction (△H = 22.65 kJ mol-1).
  1. Park HO, Kim KJ, Choi JY, Li F, Wu Q, Shin WS, J. Korean Soc. Environ. Eng., 29, 866 (2007)
  2. El-Zaidia EFM, Al-Kotb MS, Yahia IS, Physica B: Condensed Matter., 571, 71 (2019)
  3. Lee JJ, Clean Technol., 26(1), 30 (2020)
  4. Zhang L, Zhou XY, Guo XJ, Song XY, Liu XY, J. Mol. Catal. A-Chem., 335(1-2), 31 (2011)
  5. Renita AA, Kumar PS, Jabasingh A, Biores. Technol. Rep., 7, 100300 (2019)
  6. Akbarnejad S, Amooey AA, Ghasemi S, Microchem. J., 149, 103966 (2019)
  7. Jalalian N, Nabavi SR, Surf. Interface Anal., 21, 100779 (2020)
  8. Marrakchi F, Ahmed MJ, Khanday WA, Asif M, Hameed BH, J. Taiwan Inst. Chem. Eng., 71, 47 (2017)
  9. Lee JJ, Clean Technol., 26(2), 122 (2020)
  10. Lee JJ, Clean Technol., 25(1), 56 (2019)
  11. Fu JW, Zhu JH, Wang ZW, Wang YH, Wang SM, Yan RQ, Xu Q, J. Colloid Interface Sci., 542, 123 (2019)
  12. Hamza W, Dammak N, Hadjltaief HB, Eloussaief M, Benzina M, Ecotox. Environ. Safe., 163, 365 (2019)
  13. Afshin S, Mokhtari SA, Vosoughi M, Sadeghi H, Rashtbari Y, Data Brief, 21, 1008 (2018)
  14. Lee JJ, Appl. Chem. Eng., 28(2), 206 (2017)
  15. Belbachir I, Makhoukhi B, J. Taiwan Inst. Chem. Eng., 75, 105 (2017)
  16. de Souza TNV, de Carvalho SML, Vieira MGA, da Silva MGC, Brasil DDB, Appl. Surf. Sci., 448, 662 (2018)
  17. Kaur S, Rani S, Mahajan RK, Asif M, Gupta VK, J. Ind. Eng. Chem., 22, 19 (2015)
  18. Gercel O, Ozcan A, Ozcan AS, Gercel HF, Appl. Surf. Sci., 253(11), 4843 (2007)
  19. Lee EH, Lee KY, Kim KW, Kim HJ, Kim IS, Chung DY, Moon JK, Choi JW, J. Nucl. Fuel Cycle Waste Technol., 14(3), 223 (2016)
  20. Al-Kadhi NS, Egypt. J. Aquat. Res., 45(3), 231 (2019)
  21. Gopinathan R, Bhowal A, Garlapati C, J. Chem. Thermodyn., 107, 182 (2017)
  22. Hasani S, Ardejani FD, Olya ME, Korean J. Chem. Eng., 34(8), 2265 (2017)