화학공학소재연구정보센터
Clean Technology, Vol.27, No.1, 39-46, March, 2021
초미세기포 water jet을 이용한 도로 시설물 분진 제거 효율 평가
Evaluation of Dust Removal Efficiency on Roadway Structures Using Ultrafine Bubble Water Jet
E-mail:
초록
4 HP, 80 LPM 급 초미세기포수 발생장치를 탑재한 도로 구조물 세척차량을 이용하여 도시 내 아파트 단지 주변 차량 통행이 많은 터널 내 콘크리트 표면과 타일 벽면을 세척하였다. 초미세기포 생성은 대기 중 공기를 2 ~ 3 LPM 으로 기액혼합 자흡펌프로 가압된 공기를 임펠러 회전력을 이용하여 마이크로 크기의 미세기포(fine-bubble)를 생성한다. 생성된 기포를 다단충돌판과 회전 노즐을 통과하면서 평균 직경 크기는 164.5 nm, 6.81 × 107 particles mL-1의 초미세기포(ultrafine bubble)를 생산하였다. 생산된 초미세기포를 함유한 세척수는 압력 150 bar, 토출량 30 LPM 으로 도로 구조물 표면에 흡착된 분진을 고압세척분사하여 제거하였다. 분석실험은 세척 전과 후로 구분하여 표면에 흡착한 분진을 ISO 8502-3의 표면 오염 측정방법을 적용하였으며, 테이프 흡착으로 분진 입자를 채취하였다. 수집된 테이프는 중량법과 소프트웨어 ImageJ를 적용하여 분진의 무게 와 입자 개수에 대한 제거율을 산정하였다. 실험 결과, 타일 벽면 표면에 흡착된 분진 입자 개수는 세척 전과 후로 각각 3,063 ± 218 particles mL -1, 20 ± 5 particles mL-1, 중량은 580 ± 82 mg, 13 ± 4 mg 으로 나타났다. 콘크리트 구조물 표면에서의 입자 개수는 세척 전과 후로 각각 8,105 ± 1,738 particles mL-1, 39 ± 6 particles mL-1이었으며, 중량은 1,448 ± 190 mg, 118 ± 32 mg 으로 나타났다.
A road structure washing vehicle equipped with a 4 HP, 80 LPM ultrafine bubble generator was used to clean a tunnel wall and the surface of the surrounding structure, consisting of concrete and tiles, in a heavy traffic area around an apartment complex in the city. Ultrafine bubbles were generated by supplying air at 2 to 3 LPM and using a specially designed nozzle, whereas fine bubbles made by an impeller in a gas-liquid mixing self-priming pump were produced with an average diameter of 165.4 nm and 6.81 × 10 7 particles mL -1. Using a high pressure washer gun that can perform high-pressure cleaning at 150 bar and 30 LPM, ultrafine bubbles were used to wash dust adsorbed on the surface of the road structures. The experimental analysis was divided into before and after washing. The samples were analyzed by applying ISO 8502-3 to measure surface contamination of dust adsorbed on the surface. Using the transparent tape attached to the surface, the removal rate was calculated by measuring the weight of the dust, and the number of particles was calculated using the gravimetric method and the software, ImageJ. The results of the experiment showed that the number of dust particles adsorbed on the tile wall surface before and after washing were 3,063 ± 218 particles mL -1 and 20 ± 5 particles mL-1, respectively, with weights of 580 ± 82 mg and 13 ± 4 mg. Particles on the surface of the concrete structure before and after washing were 8,105 ± 1,738 particles mL-1 and 39 ± 6 particles mL-1, respectively, with weights of 1,448 ± 190 mg and 118 ± 32 mg.
  1. Chun Y, Kim J, Choi JC, Boo KO, Oh SN, Lee M, Atmos. Environ., 35(15), 2715 (2001)
  2. Gowers AM, Miller BG, Stedman JR, Centre for Radiation, Chemical and Environmental Hazards, Public Health England (2014).
  3. Na DJ, Lee BK, J. Korean Soc. Atmos. Environ., 16(1), 23 (2000)
  4. Park EJ, Kang MS, You DE, Kim DS, Yu SD, Chung KH, Park KS, Environ. Health Toxicol., 20(2), 179 (1986)
  5. Jeong HR, Choi JY, Ra KT, J. Korean Soc. Marine Environ. & Energy, 23(2), 70-80 (2020).
  6. Choi GH, Kim KH, Kang CH, Lee JH, J. Korean Soc. Atmos. Environ., 19(1), 45 (2003)
  7. Kim CH, Park IS, Lee SJ, Kim JS, Jin HA, Sung HG, J. Korean Soc. Atmos. Environ., 20(2), 215 (2004)
  8. Park SM, Moon KJ, Park JS, Kim HJ, Ahn JY, Kim JS, J. Korean Soc. Atmos. Environ., 28(3), 282 (2012)
  9. Jung YW, Han SH, Won KH, Jang KW, Hong JH, J. Korea Soc. Environ. Eng., 28(11), 1126 (2006)
  10. Lee MH, Shin JS, Shin WG, Lee SG, Kim C, Lee C, Particle and Aerosol Res., 8(2), 47-54 (2012).
  11. Nicholson KW, Branson JR, Sci. Total Environ., 93, 349 (1990)
  12. Ministry of Environment, “Study on Non-point Pollutant Management Feasibility by Road Cleaning,” (2012).
  13. Park GI, Lee JH, Park HJ, Kim HJ, Kim HR, Choi IH, J. Korean Appl. Sci. Technol., 36(4), 1281 (2019)
  14. Liu G, Wu Z, Craig VS, J. Phys. Chem. C, 112(43), 16748 (2008)
  15. Zhu J, An HJ, Alheshibri M, Liu LD, Terpstra PMJ, Liu GM, Craig VSJ, Langmuir, 32(43), 11203 (2016)
  16. Ahmed AKA, Sun C, Hua L, Zhang Z, Zhang Y, Zhang W, Marhaba T, Chemosphere, 203, 327 (2018)
  17. Ohl CD, Arora M, Dijkink R, Janve V, Lohse D, Appl. Phys. Lett., 89(7), 074102 (2006)
  18. Yasui K, Tuziuti T, Kanematsu W, Ultrason. Sonochem., 48, 259 (2018)
  19. The Norwegian Meteorological Institute and NRK, “Yr Weather Application,” https://www.yr.no/en/ (accessed Oct 2020).
  20. Korea Environment Corporation (KECO), “Clean Road,”https://www.cleanroad.or.kr/ (accessed Oct 2020).
  21. Malvern, “Laser diffraction,” https://www.malvernpanalytical.com/en/products/technology/light-scattering/laser-diffraction/(accessed Oct 2020).
  22. Ferraro G, Jadhav AJ, Barigou M, Nanoscale, 12(29), 15869 (2020)
  23. International Organization for Standardization, Tests for the assessment of surface cleanliness ISO Standard No. 8502-3 (1992).
  24. Rasband WS, Bethesda, MD, USA, http://rsb.info.nih.gov/ij/index.html (accessed Oct. 2020).
  25. Ferreira T, Rasband W, “ImageJ user guide - IJ 1.46r,”http://imagej.nih.gov/ij/docs/guide/ (accessed Oct. 2020).
  26. Papadopulos F, Spinelli M, Valente S, Foroni L, Orrico C, Alviano F, Pasquinelli G, Ultrastruct. pathol., 31(6), 401 (2007)
  27. Choi YJ, Kim YE, The Seoul Institute (2018).