화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.4, 862-871, April, 2021
Selective CO2 adsorption using N-rich porous carbon derived from KOH-activated polyaniline
E-mail:
The adsorption of pure gases of carbon dioxide, methane and nitrogen was examined on nitrogen-doped porous carbon (NDC) prepared from polyaniline (PANI) as precursor by chemical activation with KOH (T=650-°, IR=2, t=1 h) to determine the potential for the separation of CO2 gas from flue gas or natural gas. Adsorption equilibrium of all gases was determined in a temperature range of 298-318 K and pressure up to 14 bar. Results demonstrated an excellent CO2 adsorption capacity of 3.09mmoㆍg-1 owing to high CO2 interaction affinity with NDC surface compared to CH4 (1.43mmolㆍg-1) and N2 (0.64mmolㆍg-1) under ambient condition (298 K and 1 bar). The ideal adsorbed solution theory (IAST) was used to determine the adsorption selectivity of NDC for CO2/CH4 and CO2/N2 mixtures at different compositions. The NDC had CO2/CH4 (4.42 and 4.08 for CO2/CH4=10/90 and 50/50, respectively) and CO2/ N2 (12.81 and 12.08 for CO2/N2=15/85 and 50/50, respectively) IAST selectivity at temperature of 298 K and pressure of 1bar. The moderate CO2 adsorption enthalpy indicates that N-doped activated carbon is a promising material in gas separation such as natural gas and flue gas processing.
  1. Li Y, Xu R, Wang B, Wei J, Wang L, Shen M, Yang J, Nanomaterials, 9, 266 (2019)
  2. Modak A, Bhaumik A, J. Solid State Chem., 232, 157 (2015)
  3. Vasudevan S, Farooq S, Karimi IA, Saeys M, Quah MCG, Agrawal R, Energy, 103, 709 (2016)
  4. Lv D, Chen J, Yang K, Wu H, Chen Y, Duan C, Wu Y, Xiao J, Xi H, Li Z, Chem. Eng. J., 375, 122074 (2019)
  5. Xian SK, Peng JJ, Zhang ZJ, Xia QB, Wang HH, Li Z, Chem. Eng. J., 270, 385 (2015)
  6. Kim HS, Kang MS, Lee S, Lee YW, Yoo WC, Microporous Mesoporous Mater., 272, 92 (2018)
  7. Hoorfar M, Alcheikhhamdon Y, Chen B, Comput. Chem. Eng., 117, 11 (2018)
  8. Zia-ul-Mustafa M, Mukhtar H, Nordin N, Mannan H, Mater. Today. Proc., 16, 1976 (2019)
  9. Song C, Liu Q, Deng S, Li H, Kitamura Y, Renew. Sust. Energ. Rev., 101, 265 (2019)
  10. Zheng WT, Huang K, Dai S, Microporous Mesoporous Mater., 290, 109653 (2019)
  11. Peng HL, Zhang JB, Zhang JY, Zhong FY, Wu PK, Huang K, Fan JP, Liu FJ, Chem. Eng. J., 359, 1159 (2019)
  12. Chang BB, Shi WW, Yin H, Zhang SR, Yang BC, Chem. Eng. J., 358, 1507 (2019)
  13. Fiyadh SS, AlSaadi MA, Jaafar WZ, AlOmar MK, Fayaed SS, Mohd NS, Hin LS, El-Shafie A, J. Clean Prod., 230, 783 (2019)
  14. Xu M, Chen SJ, Seo DK, Deng SG, Chem. Eng. J., 371, 693 (2019)
  15. Jribi S, Miyazaki T, Saha BB, Pal A, Younes MM, Koyama S, Maalej A, Int. J. Heat Mass Transfer, 108, 1941 (2017)
  16. Weng X, Cui Y, Shaikhutdinov S, Freund HJ, J. Phys. Chem. C, 123, 1880 (2018)
  17. Gomez-Pozuelo G, Sanz-Perez E, Arencibia A, Pizarro P, Sanz R, Serrano D, Microporous Mesoporous Mater., 282, 38 (2019)
  18. Kishor R, Ghoshal AK, Chem. Eng. J., 262, 882 (2015)
  19. Wang J, Krishna R, Wu XF, Sun YQ, Deng SG, Langmuir, 31(36), 9845 (2015)
  20. An LY, Liu SF, Wang LL, Wu JY, Wu ZZ, Ma CD, Yu QK, Hu X, Ind. Eng. Chem. Res., 58(8), 3349 (2019)
  21. Nugent P, Belmabkhout Y, Burd SD, Cairns AJ, Luebke R, Forrest K, Pham T, Ma SQ, Space B, Wojtas L, Eddaoudi M, Zaworotko MJ, Nature, 495(7439), 80 (2013)
  22. Zhong R, Xu Z, Bi W, Han S, Yu X, Zou R, Inorg. Chim. Acta., 443, 299 (2016)
  23. Kacem M, Pellerano M, Delebarre A, Fuel Process. Technol., 138, 271 (2015)
  24. Khalili S, Khoshandam B, Jahanshahi M, RSC Adv., 6, 35692 (2016)
  25. Singh J, Basu S, Bhunia H, Microporous Mesoporous Mater., 280, 357 (2019)
  26. Dassanayake AC, Jaroniec M, Colloids Surf. A: Physicochem. Eng. Asp., 549, 147 (2018)
  27. Qezelsefloo E, Khalili S, Jahanshahi M, Peyravi M, Mater. Chem. Phys., 239, 122304 (2020)
  28. Li X, Sui ZY, Sun YN, Xiao PW, Wang XY, Han BH, Microporous Mesoporous Mater., 257, 85 (2018)
  29. Pallares J, Gonzalez-Cencerrado A, Arauzo I, Biomass Bioenergy, 115, 64 (2018)
  30. Apaydın-Varol E, Erulken Y, J. Taiwan Inst. Chem. Eng., 54, 37 (2015)
  31. Singh J, Basu S, Bhunia H, Microporous Mesoporous Mater., 280, 357 (2019)
  32. Khalili S, Khoshandam B, Jahanshahi M, RSC Adv., 6, 35692 (2016)
  33. Ammendola P, Raganati F, Chirone R, Chem. Eng. J., 322, 302 (2017)
  34. Raganati F, Alfe M, Gargiulo V, Chirone R, Ammendola P, Chem. Eng. Res. Des., 134, 540 (2018)
  35. Myers AL, Prausnitz JM, AIChE J., 11, 121 (1965)
  36. Do DD, Adsorption analysis: Equilibria and kinetics (with cd containing computer MATLAB programs), World Scientific, London (1998).
  37. Garshasbi V, Jahangiri M, Anbia M, Appl. Surf. Sci., 393, 225 (2017)
  38. Zohdi S, Anbia M, Salehi S, Polyhedron, 166, 175 (2019)
  39. Heidari A, Younesi H, Rashidi A, Ghoreyshi AA, Chem. Eng. J., 254, 503 (2014)
  40. Huangfu Y, Ruan K, Qiu H, Lu Y, Liang C, Kong J, Gu J, Compos. Pt. A-Appl. Sci. Manuf., 121, 265 (2019)
  41. Daikh S, Zeggai F, Bellil A, Benyoucef A, J. Phys. Chem. Solids, 121, 78 (2018)
  42. Janaki V, Vijayaraghavan K, Oh BT, Lee KJ, Muthuchelian K, Ramasamy A, Kamala-Kannan S, Carbohydr. Polym., 90, 1437 (2012)
  43. Tofighy MA, Mohammadi T, Chem. Eng. Res. Des., 90(11), 1815 (2012)
  44. Stejskal J, Sapurina I, Trchova M, Prog. Polym. Sci., 35, 1420 (2010)
  45. Wang J, Krishna R, Wu XF, Sun YQ, Deng SG, Langmuir, 31(36), 9845 (2015)
  46. Park J, Attia NF, Jung M, Lee ME, Lee K, Chung J, Oh H, Energy, 158, 9 (2018)
  47. Su W, Yao L, Ran M, Sun Y, Liu J, Wang XJ, J. Chem. Eng. Data, 63(8), 2914 (2018)
  48. Sawant SY, Somani RS, Bajaj HC, Sharma SS, J. Hazard. Mater., 227, 317 (2012)
  49. Barcia PS, Bastin L, Hurtado EJ, Silva JAC, Rodrigues AE, Chen BL, Sep. Sci. Technol., 43(13), 3494 (2008)
  50. Wang L, Rao L, Xia B, Wang L, Yue L, Liang Y, Da Costa H, Hu X, Carbon, 130, 31 (2018)
  51. Alvarez-Gutierrez N, Gil MV, Rubiera F, Pevida C, Fuel Process. Technol., 142, 361 (2016)