화학공학소재연구정보센터
Chemical Engineering Research & Design, Vol.165, 25-39, 2021
Cyber-security of centralized, decentralized, and distributed control-detector architectures for nonlinear processes
Decentralized and distributed control systems provide an efficient solution to many challenges of controlling large-scale industrial processes. With the expansion in communication networks, vulnerability to cyber intrusions also increases. This work investigates the effect of different types of standard cyber-attacks on the operation of nonlinear processes under centralized, decentralized, and distributed model predictive control (MPC) systems. The robustness of the decentralized control architecture over distributed and centralized control architectures is analyzed. Moreover, a machine-learning-based detector is trained using sensor data to monitor the cyber security of the overall system. Specifically, detectors built using feed-forward neural networks are used to detect the presence of an attack or identify the subsystem being attacked. A nonlinear chemical process example is simulated to demonstrate the robustness of decentralized control architectures and the effectiveness of the neural-network detection scheme in maintaining the closed-loop stability of the system. (C) 2020 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.