화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.533, No.4, 958-964, 2020
Recombinant PaurTx-3, a spider toxin, inhibits sodium channels and decreases membrane excitability in DRG neurons
Voltage-gated sodium channels are critical for the generation and propagation of action potentials. Gating modifier toxins from spider venom can modulate the gating mechanism of sodium channels and thus have potential as drug leads. Here, we established expression of the gating modifier toxin PaurTx-3, a sodium channel inhibitor found in the venom of the spider Phrixotrichus auratus. Whole-cell voltage-clamp recordings indicated that recombinant PaurTx-3 (rPaurTx-3) inhibited Nav1.4, Nav1.5, and Nav1.7 currents with IC50 values of 61 nM, 72 nM, and 25 nM, respectively. Furthermore, rPaurTx-3 irreversibly inhibited Nav1.7 currents, but had 60-70% recovery in Nav1.4 and Nav1.5 after washing with a bath solution. rPaurTx-3 also hyperpolarized the voltage-dependent steady-state inactivation curve and significantly slowed recovery from fast inactivation of Nav1.7. Current-clamp recordings showed that rPaurTx-3 suppressed small DRG neuron activity. The biological activity assay findings for rPaurTx-3 support its potent pharmacological effect in Nav1.7 and small DRG neurons. (C) 2020 Elsevier Inc. All rights reserved.